Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thân tùng chi
Xem chi tiết
Son Nguyen Thanh
Xem chi tiết
Son Nguyen Thanh
6 tháng 12 2020 lúc 9:41

Giup mik với các bạn 

Khách vãng lai đã xóa
Đỗ Hồng Ngọc
Xem chi tiết
Hiếu
24 tháng 4 2019 lúc 21:18

Đặt \(T=a^2+4b^2\)(1)

Vì a+4b=1 => a=1-4b

Thế vào (1) ta được: \(T=\left(1-4b\right)^2+4b^2=20b^2-8b+1\)

<=> \(T=20\left(b^2-2\cdot\frac{1}{5}\cdot b+\frac{1}{25}\right)+\frac{1}{5}=20\left(b-\frac{1}{5}\right)^2+\frac{1}{5}\)

=> \(T\ge\frac{1}{5}\left(đpcm\right)\)

Cố Tử Thần
8 tháng 6 2019 lúc 15:01

trả lời

anh ơi cái anyf dùng bất đẳng thức

(ax+by)^2<= (a^2+b^2)(x^2+y^2) cũng được nhỉ

cách này nhanh hơn đó ạ

hok tốt

Trần Lê Nguyên Mạnh
Xem chi tiết
Tran Le Khanh Linh
25 tháng 8 2020 lúc 15:41

Từ giả thiết a+b+c=1 suy ra: c=1-a-b, thay vào bất đẳng thức ta được

(3a+4b+5-5a-5b)2\(\ge\)44ab+44(a+b)(1-a-b)

<=> 48a2+16(3b-4)a+45b2-54b+25\(\ge0\)

Xét \(f\left(a\right)=48a^2+16\left(3b-4\right)a+45b^2-54b+25\), khi đó ta được

\(\Delta'=64\left(3b-4\right)^2-48\left(45b^2-54b+25\right)=-176\left(3b^2-1\right)\le0\)

Do đó suy ra: f(a) \(\ge\)0 hay 48a2+16(3a-4)a+45b2-54b+25\(\ge\)0

Dấu "=" xảy ra khi và chỉ khi \(a=\frac{1}{2};b=\frac{1}{3};c=\frac{1}{6}\)

Khách vãng lai đã xóa
Chi Khánh
Xem chi tiết
Nguyễn Bình Nguyên
Xem chi tiết
Bịp_Version 6
20 tháng 4 2022 lúc 12:15

100

Bảo Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2022 lúc 0:33

Câu 2: 

f(3)=f(-3)

=>9a+3b+c=9a-3b+c

=>6b=0

hay b=0

=>f(x)=ax2+c

=>f(x)=f(-x)

Lê An Chi
Xem chi tiết
Chi Khánh
Xem chi tiết