\(\frac{x-2}{x-1}=\frac{x+9}{x+7}\) (với x khác 1 và x khác -7)
Cho f(x) là hàm số xác định với mọi x khác 0 và thỏa mãn:
a.f(x)=1
b.\(f\left(\frac{1}{x}\right)=\frac{1}{x^2}\)với mọi x khác 0
c.\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
với mọi x1 khác 0, x2 khác 0, x1+x2 khác 0
Chứng minh rằng \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)
cho f(x) xác định với mọi x khác 0 T/m
a,f(1) = 1
b, f(\(\frac{1}{x}\)) = \(\frac{1^{ }}{x^2}\)* f(x)
c, f(x1+x2) = f(x1) + f(x2) vs x1,x2 khác 0 và x1+ x2 khác 0
Cm f(\(\frac{5}{7}\)) = \(\frac{5}{7}\)
cho hàm số f(x) xác định với mọi x khác 0 biết f(1)=1;f(x1+x2)=f(x1)+f(x2) với mọi x1,x2,x1+x2 khác 0
và f(\(\frac{1}{x}\)) =\(\frac{1}{x^2}\).f(x)
Chứng minh f(\(\frac{5}{7}\))=\(\frac{5}{7}\)
tính f(\(\frac{2}{3}\))
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right)\): \(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)(với x >0, x khác 4)
Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
1. Trong các phương trình sau, phương trình bậc nhất 1 ẩn là
A. 2/x - 7=0; B. |7x+5)-1=0; C. 8x-9=0
2. điều kiện xác định của phương trình
\(\frac{4}{2x-3}\)= \(\frac{7}{3x-5}\)là
A. x khác 3/2. B. x khác5/3; C. x khác 3/2 hoặc 5/3; D. x khác 3/2 và 5/3
1. Trong các phương trình sau, phương trình bậc nhất 1 ẩn là
A. 2/x - 7=0; B. |7x+5)-1=0; C. 8x-9=0
2. điều kiện xác định của phương trình
\(\frac{4}{2x-3}=\frac{7}{3x-5}\)là
A. x khác 3/2. B. x khác5/3; C. x khác 3/2 hoặc 5/3; D. x khác 3/2 và 5/3
1.Pt bậc nhất 1 ẩn:\(8x-9=0\)
2.ĐKXĐ:\(x\ne\frac{3}{2};x\ne\frac{5}{3}\)
Cho x,y,z là 3 số thực khác 0 thoả mãn đồng thời :x+y+z= a và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)
Tính giá trị biểu thức S= \(\left(x^5-a^5\right)\left(y^7-a^7\right)\left(x^9-a^9\right)\)
Với x, y ,z khác 0 và \(\frac{2x-7}{4x-9}=\frac{7}{9},\frac{3y-6}{4z-8}=\frac{3}{4}\Rightarrow\frac{x}{y}+\frac{y}{z}=?\)
cho \(x^2+\frac{1}{x^2}=7\).Tính \(A=x^5+\frac{1}{x^5}\) với x khác 0
Cho biểu thức P=\(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
với x>=0 ; x khác 9; x khác 4
Rút gọn biểu thức P
giúp mình với
Bài làm:
Ta có:
\(P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(P=\frac{x-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\left[\frac{\left(9-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(P=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{-x+6\sqrt{x}+27+x-4\sqrt{x}+2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\div\frac{x+2\sqrt{x}+20}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x+2\sqrt{x}+20}\)
\(P=\frac{3\left(\sqrt{x}-2\right)}{x+2\sqrt{x}+20}=\frac{3\sqrt{x}-6}{x+2\sqrt{x}+20}\)