Tìm các só nguyên x để giá trị của biểu thức sau là số nguyên : C= x+1/x-2
a) Tìm các giá trị nguyên của x để phân số sau nhận các giá trị nguyên:
A= 6x +9/ 3x+2
b) Tìm giá trị nhỏ nhất của biểu thức :
A=| x | + | 8-x |
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
[...]5chia hết 3x+2
3x+2thuoc tập ước của 5
[...]
Tìm các giá trị nguyên của x để phân thức sau là số nguyên
M=\(\dfrac{2x^2-3x+3}{x-2}\)
Lời giải:
$M=\frac{2x^2-3x+3}{x-2}=\frac{(2x^2-4x)+(x-2)+5}{x-2}$
$=\frac{2x(x-2)+(x-2)+5}{x-2}=2x+1+\frac{5}{x-2}$
Với $x$ nguyên, để $M$ nguyên thì $\frac{5}{x-2}$ nguyên
$\Rightarrow x-2$ là ước của $5$ (do $x$ nguyên)
$\Rightarrow x-2\in\left\{5;-5;1;-1\right\}$
$\Rightarrow x\in\left\{7; -3; 3; 1\right\}$
Tìm các giá trị của biến số x để biểu thức sau có giá trị nguyên:
\(\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
cho biểu thức C=\(\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)
a, Tìm giá trị của x để giá trị của biểu thức C được xác định
b, Tìm x để C=0
c, Tìm giá trị nguyên của x để C nhận giá trị dương
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
1. Tìm các giá trị nguyên của x để biểu thức sau có giá trị lớn nhất:
a.A=\(\frac{2}{5-x}\) b. B=\(\frac{19-2x}{9-x}\)
2. Cho hai biểu thức: A=\(\frac{4x-7}{x-2}\); B=\(\frac{3x-9x+2}{x-3}\). Tìm các giá trị nguyên của x để cả hai biểu thức cùng có giá trị nguyên.
Cho biểu thức: A=[2/(x+1)3(1/x+1) + 1/x2+2x+1(1/ x2 +1)]:x-1/x3]
a. Thu gọn A
b. Tìm các giá trị của x để A≥1
c. Tìm các giá trị nguyên của x để A có giá trị nguyên
Tìm số các số nguyên m để giá trị của biểu thức m-1 chia hết cho giá trị của 2m+1
Cho biểu thức 𝐴 = 4
𝑛-1
(𝑛 ∈ 𝑍)
a) Số nguyên n phải có điều kiện gì để A là phân số?
b) Tìm tất cả các giá trị nguyên của n để A là số nguyên.
giúp mik vs
a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.
b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)
Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.
a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
a) 2-n khác 0
2n khác 4
=> n khác 2
b) 2n+1 chia hết 2n-4
2n-4+5 chia hết 2n-4
=> 2n-4+5/2n-4=2n-4/2n-4+5/2n-4=1+5/2n-4
=> 5 chia hết 2n-4
=> 2n-4 là Ư(5)=( 5;-5;1;-1)
=> 2n=(9;-1;5;3)
=> x ko thỏa mãn
Tìm các giá trị nguyên của x để phân thức sau là số nguyên
\(M=\frac{2x^2-3x+3}{x-2}\)
Cho A= x-9/3+√x ( lưu ý / là phân số) a) Tìm giá trị của x để biểu thức A có nghĩa b) Rút gọn A c) tính giá trị biểu thức A khi x=0;x=-1;x=16 d) Tìm x nguyên để A nguyên
\(A=\dfrac{x-9}{3+\sqrt{x}}\) (đề như này pk?)
a) Để A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3+\sqrt{x}\ne0\left(lđ\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
b) \(A=\dfrac{x-9}{3+\sqrt{x}}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{3+\sqrt{x}}=\sqrt{x}-3\)
c) Với x=0 (tmđk) thay vào A ta được: \(A=\sqrt{0}-3=-3\)
Với x=-1 (ktm đk)
Với x=16 (tmđk) thay vào A ta được: \(A=\sqrt{16}-3=1\)
d) \(A\in Z\Leftrightarrow\sqrt{x}-3\in Z\Leftrightarrow\sqrt{x}\in Z\) \(\Leftrightarrow\) x là số chính phương