Giải pt nghiệm nguyên:
2x2y2-xy=2x2+y2
Tập nghiệm của pt: x4-8x ²-9=0
Hệ pt: x2+y2+xy=7
x2+y2-xy=3
có nghiệm là.
Cho phương trình(x2-3x+3)2-2x2+6x-5=0 Nếu đặt t=x2-3x+3
thì phương trình đã cho trở thành phương trình nào
Gọi là tập tất cả các giá trị nguyên của tham số thuộc đoạn −2;6 để phương trình x2+4mx +m2
có hai nghiệm dương phân biệt. Tổng các phần tử trong S bằng
A. -3.
B. 2.
C. 18.
D. 21.
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
giải pt nghiệm nguyên: x2(1-y0+xy+y2=0
phân tích đa thức thành nhân tử 2 ẩn :
a) 2x2+xy-y2-x+2y-1
b) 3x2-2xy-y2-10x-2y+3
c) 3x2y-xy2+xy-2y2-3x-9y+5
d) 2x2y2-3xy-2y2+y+1
e) 3x3-12xy2-5x2-4y2+x+1
a)2x^2+xy-y^2-x+2y-1
=2x^2+xy-x-(y-1)^2
=2x^2+x(y-1)-(y-1)^2
=2a^2+ab-b^2 với a=x,b=y-1
=2a^2+2ab-ab-b^2
=(2a-b)(a+b)
=(2x-y+1)(x+y-1)
Giải pt nghiệm nguyên:
1. x2+y2=(x-y)(xy+2)+9
2. xy=p(x+y) với p là số nguyên tố
3. x3+y3=2022
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Cho hệ phương trình: 2 x 2 + x y − y 2 = 0 x 2 − x y − y 2 + 3 x + 7 y + 3 = 0 . Các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là:
A. (2; −2), (3; −3).
B. (−2; 2), (−3; 3).
C. (1; −1), (3; −3).
D. (−1; 1), (−4; 4).
Phương trình 1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y
Trường hợp 1: x = - y thay vào (2) ta được x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3
Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).
Trường hợp 2: 2 x = y thay vào (2) ta được - 5 x 2 + 17 x + 3 = 0 phương trình này không có nghiệm nguyên.
Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).
Đáp án cần chọn là: C
Giải phương trình nghiệm nguyên: (y2+1)(2x2+x+1)=x+5
Do \(2x^2+x+1>0;\forall x\) nên pt tương đương:
\(y^2+1=\dfrac{x+5}{2x^2+x+1}\)
Ta có: \(6-\dfrac{x+5}{2x^2+x+1}=\dfrac{12x^2+5x+1}{2x^2+x+1}=\dfrac{12\left(x+\dfrac{5}{24}\right)^2+\dfrac{23}{48}}{2\left(x+\dfrac{1}{4}\right)^2+\dfrac{7}{8}}>0\) ; \(\forall x\)
\(\Rightarrow\dfrac{x+5}{2x^2+x+1}< 6\Rightarrow y^2+1< 6\)
\(\Rightarrow y^2< 5\) \(\Rightarrow y^2=\left\{0;1;4\right\}\)
- Với \(y^2=0\Rightarrow y=0\Rightarrow2x^2+x+1=x+5\Rightarrow x^2=2\) (ko tồn tại x nguyên thỏa mãn) \(\Rightarrow\) loại
- Với \(y^2=1\Rightarrow2\left(2x^2+x+1\right)=x+5\)
\(\Leftrightarrow4x^2+x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)
- Với \(y^2=4\Rightarrow5\left(2x^2+x+1\right)=x+5\)
\(\Leftrightarrow10x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{5}\left(loại\right)\end{matrix}\right.\)
Vậy pt có 4 cặp nghiệm nguyên:
\(\left(x;y\right)=\left(-1;-1\right);\left(-1;1\right);\left(0;-2\right);\left(0;2\right)\)