Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tài Bảo Châu
Xem chi tiết
Nguyễn Văn Tuấn Anh
22 tháng 7 2019 lúc 22:20

Ta có: \(\frac{P\left(x\right)}{Q\left(x\right)}=\frac{x^4+x^3-2x^2+ax+b+x^2}{x^2+x-2}=x^2+\frac{x^2+ax+b}{x^2+x-2}\) 

Để P(x)\(⋮\) Q(x)

\(\Rightarrow x^2+ax+b⋮x^2+x-2\) 

\(\Rightarrow a=1;b=-2\) 

Vậy.......

Trang Linh
Xem chi tiết
Chu Diệu Linh
Xem chi tiết
Lê Hồ Trọng Tín
9 tháng 5 2019 lúc 10:49

Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1

=>2 và 1 cũng là nghiệm của B(x)

<=>B(1)=0 và B(2)=0

<=>2+a+b+4=0 và 16+4a+2b+4=0

<=>a+b=-6 và 2(2a+b)=-20

<=>a+b=-6 và 2a+b=-10

Suy ra:a=-4 và b=-2

Lê Như Quỳnh
Xem chi tiết
An Ann
Xem chi tiết
Quận Hoàng Đăng
10 tháng 9 2016 lúc 22:03

có gì pm

buồn ngủ

Lê Tài Bảo Châu
Xem chi tiết
Huỳnh Quang Sang
23 tháng 7 2019 lúc 15:40

Cách 1 : Chia \(f(x)\)cho x2 + x + 1

Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)

Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)

Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :

\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)

\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)

Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k +  1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1

Lam Hong My Tam
Xem chi tiết
hoang dung yen
Xem chi tiết
Nấm Chanel
Xem chi tiết
Phan Cả Phát
17 tháng 10 2017 lúc 22:09

Casio hả bạn