Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uchiha Itachi
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 18:10

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

Nalumi Lilika
Xem chi tiết
Hồng Phúc
14 tháng 2 2021 lúc 10:00

\(\left\{{}\begin{matrix}\left(x+1\right)\left(x^2+1\right)=y^3+1\\\left(y+1\right)\left(y^2+1\right)=z^3+1\\\left(z+1\right)\left(z^2+1\right)=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+x^2+x=y^3\left(1\right)\\y^3+y^2+y=z^3\\z^3+z^2+z=x^3\end{matrix}\right.\)

Giả sử \(x>y\Rightarrow x^3+x^2+x>y^3+y^2+y\)

\(\Rightarrow y^3>z^3\Leftrightarrow y>z\left(2\right)\)

\(\Rightarrow y^3+y^2+y>z^3+z^2+z\Rightarrow z>x\left(3\right)\)

Từ \(\left(2\right);\left(3\right)\Rightarrow y>x\) (Vô lí)

Giả sử \(x< y\Rightarrow x^3+x^2+x< y^3+y^2+y\)

\(\Rightarrow y^3< z^3\Leftrightarrow y< z\left(4\right)\)

\(\Rightarrow y^3+y^2+y< z^3+z^2+z\Rightarrow z< x\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow y< x\) (Vô lí)

\(\Rightarrow x=y=z\)

\(\left(1\right)\Leftrightarrow x^3+x^2+x=x^3\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow x=y=z=0\) hoặc \(x=y=z=-1\)

Anh Khương Vũ Phương
Xem chi tiết
Trần Trung Nguyên
26 tháng 12 2018 lúc 20:38

Ta có \(x^2+y^2+z^2=6\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+xz+yz\right)=6\Leftrightarrow2^2-2\left(xy+xz+yz\right)=6\Leftrightarrow xy+xz+yz=-1\)

Ta lại có \(x^3+y^3+z^3=8\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)+3xyz=8\Leftrightarrow2\left[6-\left(-1\right)\right]+3xyz=8\Leftrightarrow3xyz=-6\Leftrightarrow xyz=-2\)

Vậy ta sẽ có hệ phương trình mới

\(\left\{{}\begin{matrix}x+y+z=2\\xy+xz+yz=-1\\xyz=-2\end{matrix}\right.\)

Coi x,y,z là nghiệm x1,x2,x3 của một phương trình bậc 3, theo công thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2+x_3=2\\x_1x_2+x_1x_3+x_2x_3=-1\\x_1x_2x_3=-2\end{matrix}\right.\)

Suy ra x1,x2,x3 là ba nghiệm của 1 phương trình

\(x^3-2x^2-x+2=0\Leftrightarrow\left(x-2\right)\left(x^2-1\right)=0\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=2\\x=-1\end{matrix}\right.\)

Vì x;y;z có vai trò như nhau trong hệ phương trình nên hệ phương trình đã cho có 6 nghiệm (x;y;z) là: (1;2;-1);(1;-1;2);(2;1;-1);(2;-1;1);(-1;2;1);(-1;1;2)

Bùi Đức Anh
Xem chi tiết
Trương Huy Hoàng
11 tháng 1 2021 lúc 22:21

\(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)

Cộng 2 vế của 2 BĐT trên ta được:

x2 - xy + y2 + z2 + yz + 1 = 3

\(\Leftrightarrow\) 2x2 - 2xy + 2y2 + 2z2 + 2yz - 4 = 0

\(\Leftrightarrow\) x2 - 2xy + y2 + y2 + 2yz + z2 + x2 - 4 + z2 = 0

\(\Leftrightarrow\) (x - y)2 + (y + z)2 + z2 + (x - 2)(x + 2) = 0

Ta có: (x - y)\(\ge\) 0 với mọi x; y

(y + z)\(\ge\) 0 với mọi y; z

z2 \(\ge\) 0 với mọi z

\(\Rightarrow\) (x - y)2 + (y + z)2 + z\(\ge\) 0 với mọi x; y; z

\(\Rightarrow\) (x - 2)(x + 2) \(\ge\) 0 

Dấu "=" xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=0\\y+z=0\\z=0\\\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\end{matrix}\right.\)

Với x = 2 ta có: (2 - y)2 + (y + z)2 + z2 = 0

Dấu "=" xảy ra 

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=0\\y+z=0\\z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=2\\z=0\end{matrix}\right.\)

Thử lại thấy KTM

Với x = -2 ta có: (-2 - y)2 + (y + z)2 + z2 = 0

Dấu "=" xảy ra

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y=0\\y+z=0\\z=0\end{matrix}\right.\) (Vô nghiệm)

Vậy hpt vô nghiệm 

Mk ko chắc lắm ;-; (ko bt đúng ko :v)

 

Trần Minh Hoàng
11 tháng 1 2021 lúc 22:56

Xét pt thứ 2 là pt bậc 2 so với ẩn z.

Ta có \(\Delta=y^2-4\ge0\Leftrightarrow y^2\ge4\).

Do đó ta có: \(x^2-xy+y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge3\).

Đẳng thức xảy ra khi và chỉ khi \(y^2=4;x=\dfrac{1}{2}y\).

+) y = 2 \(\Rightarrow x=1;z=-1\).

+) \(y=-2\Rightarrow x=-1;z=1\).

Anh Phạm
Xem chi tiết
Akai Haruma
7 tháng 1 2022 lúc 22:28

Lời giải:
$x,y,z>0$ thì $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ mới xác định.

Áp dụng BĐT AM-GM:

$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9$

Dấu "=" xảy ra khi $x=y=z$. Thay vào pt $(2)$:

$x^3=x^2+x+2$

$\Leftrightarrow x^3-x^2-x-2=0$

$\Leftrightarrow x^2(x-2)+x(x-2)+(x-2)=0$

$\Leftrightarrow (x^2+x+1)(x-2)=0$
Dễ thấy $x^2+x+1>0$ với mọi $x>0$ nên $x-2=0$

$\Rightarrow x=2$
Vậy hpt có nghiệm $(x,y,z)=(2,2,2)$

Minh Tam Nguyen
Xem chi tiết
TFBoys
8 tháng 8 2017 lúc 11:19

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

TFBoys
8 tháng 8 2017 lúc 11:03

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

TFBoys
8 tháng 8 2017 lúc 11:08

2. \(\left\{{}\begin{matrix}\left(xy-x\right)-\left(y-1\right)=6\\\left(yz-y\right)-\left(z-1\right)=12\\\left(zx-z\right)-\left(x-1\right)=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=6\\\left(y-1\right)\left(z-1\right)=12\\\left(z-1\right)\left(x-1\right)=8\end{matrix}\right.\)

Đến đây dễ rồi

vỵmvcnvmmhk
Xem chi tiết
vỵmvcnvmmhk
13 tháng 7 2018 lúc 9:38

Aki Tsuki hattori heiji Akai Haruma

Anime
Xem chi tiết
Lê Song Phương
29 tháng 5 2023 lúc 19:24

 Từ \(x^3+y^3+z^3=-3\) 

\(\Leftrightarrow2x^3+2y^3+2z^3=-6\) 

\(\Leftrightarrow2x^3+2y^3+2z^3=-3\left(x^2y+y^2z+z^2x\right)-3\left(xy^2+yz^2+zx^2\right)\)

\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+\left(y^3+3y^2z+3yz^2+z^3\right)+\left(z^3+3z^2x+3zx^2+x^3\right)=0\)

\(\Leftrightarrow\left(x+y\right)^3+\left(y+z\right)^3+\left(z+x\right)^3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y+y+z+z+x=0\\x+y=y+z=z+x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)

 Xét TH \(x=y=z\), thay vào pt thứ 3 của hệ, ta có \(3x^3=-3\Leftrightarrow x=-1\) \(\Rightarrow\left(x;y;z\right)=\left(-1;-1;-1\right)\). Thử lại vào 2 pt đầu, ta thấy rõ ràng không thỏa mãn.

 Xét TH \(x+y+z=0\), ta sẽ có \(x^3+y^3+z^3=3xyz\) \(\Rightarrow xyz=-1\)

 Thay vào pt đầu tiên của hệ, thu được \(x^2y+y^2z+z^2x=-xyz\) \(\Leftrightarrow x^2y+y^2z+z^2x+xyz=0\). Tương tự, ta có \(xy^2+yz^2+zx^2+xyz=0\). Cộng theo vế 2 pt này, ta được \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\). Ta xét TH \(x+y=0\). Do \(x+y+z=0\) nên \(z=0\) và \(x=-y\), không thỏa mãn pt thứ 3. Tương tự với 2 trường hợp còn lại.

 Vậy hpt đã cho vô nghiệm.

〄κҽᏁ_℘ċム
29 tháng 5 2023 lúc 15:04

Lấy (2) cộng (3) ta được

�2+�2−��−��=2 (4)

Lấy (1) - (4) ta được

2�(�+�)=0

⇔[�=0�=−�

Xét 2 TH rồi thay vào tìm được y và z

 

〄κҽᏁ_℘ċム
29 tháng 5 2023 lúc 16:19

Nhớ tick nha

{3�2+��−��+�2=2(1)�2+��−��+�2=0(2)�2−��−��−�2=2(3)

Lấy (2) cộng (3) ta được

�2+�2−��−��=2 (4)

Lấy (1) - (4) ta được

2�(�+�)=0

⇔[�=0�=−�

Xét 2 TH rồi thay vào tìm được y và z

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 17:12

1. Với mọi số thực x;y;z ta có:

\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)

\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)

\(\Rightarrow P\ge3\)

\(P_{min}=3\) khi \(x=y=z=1\)

1.1

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)

\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)

\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)

\(\Leftrightarrow a=b\Leftrightarrow x=y\)

Thay vào pt đầu:

\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))

\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)

\(\Rightarrow a=1\Rightarrow x=y=1\)

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 17:15

2.

\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)

\(\Rightarrow4x^2-10xy+4y^2=0\)

\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)

Thế vào pt đầu

...