Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB9cm,HC16cm.Tính các độ dài AH,ABAC b) Chứng minh các hệ thức AH2HB.HC,AB2BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB4cm,HC9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ4cm,CP9cm. Tính cạnh của hình vuông. Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH6cm,BH4cm,HC9cm. Chứng min...
Đọc tiếp
Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH
a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC
b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH
Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .
Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông.
Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng:
a) Tam giác AHB đồng dạng với tam giác CHA .
b) BAC = 90o
Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC
Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng
Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng :
a) BH.BD=BK.BC
b) CH.CE=CK.CB
c) BH.BD+CH.CE=BC2
Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng :
a) AB.AE=AC.HC
b) BC. AK=AC.HC
c) AB.AE+AD.AK=AC2