Bài 1: Cho S = 1 + 2 + \(2^2\)+ ... + \(2^{30}\). Chứng minh rằng S chia cho 14 dư 1
Bài 2: Tìm các cặp số ( a, b ) biết:
\(\frac{1}{a}\)+ \(\frac{1}{b}\)= 1 ( với a, b thuộc N* )
Bài 1:Cho a,b là 2 số tự nhiên. Biết Rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Chứng minh rằng ab chia cho 5 dư 1
Bài 2:Cho 3 số tự nhiên liên tiếp. Tích của 2 số đầu nhỏ hơn tích của 2 số sáu là 50. hỏi đã cho 3 số nào?
Bài 3: Cho a+b+c=2p. Chứng minh 2bc+b mũ 2+c mũ 2-a mũ 2= 4p(p-a)
Bài 4: Cho 3 số chẵn liên tiếp. Tích của 2 số sau lớn hơn tích của hai số đầu là 192. Hỏi đã cho 3 số nào?
1:
a chia 5 dư 3 nên a=5k+3
b chia 5 dư 2 nên b=5c+2
a*b=(5k+3)(5c+2)
=25kc+10k+15c+6
=5(5kc+2k+3c+1)+1 chia 5 dư 1
2:
Gọi ba số liên tiếp là a;a+1;a+2
Theo đề, ta có:
(a+1)(a+2)-a(a+1)=50
=>a^2+3a+2-a^2-a=50
=>2a+2=50
=>2a=48
=>a=24
=>Ba số cần tìm là 24;25;26
Bài 1 a) Điền chữ số thích hợp vào dấu * để 230* chia hết cho 2 .b) Tìm các chữ số x , sao cho 328xy chia hết cho 2,5,3,9
Bài 2 . Cho S= 1+2+3+...+156.S có chia hết cho 5 ko ? Vì sao ?
Bài 3 . A= 5+5^2+5^3+...+5^8 là bội của 30
Bài 4) . a) chứng tỏ : (n+42) . (n+51) là số chẵn với n thuộc N
b) chứng minh rằng tổng sau đây là hợp số : abcabc+22
Bài 1: chứng minh rằng: V với y thuộc N thì 5y+2và 3y+1 là 2 số nguyên tố cùng nhau
Bài 2 : (a,b)=n+1 và a.b=11n+14 với n thuộc N
Bài 3 : cho a,b thuộc N và a>b
chúng minh rằng nếu a+2b chia hết cho 7 thì (3a-b)(5a+3b+7)chia hết cho 98
AI TRẢ LỜI NHANH MÌNK TICK CHO NHÉ
CẢM ƠN NHÌU
Bài 1
Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)
Bài 2
Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)
B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)
CMR \(\frac{A}{B}\)là 1 số nguyên
Bài 3
a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307
b) Cho đa thức f(x)=\(a_4x^4+a_3x^3+a_2x^2+a_1x+a_0\)
Biết rằng : f(x)=f(-1);f(2)=f(-2)
Chứng minh : f(x)=f(-x) với mọi x
Cho 4 số không âm a, b, c, d thỏa mãn a+b+c+d=1. Gọi S là tổng các giá trị tuyệt đối của hiệu từng cặp số có được từ 4 số này. S có thể đạt được giá trị lớn nhất bằng bao nhiêu?
Bài 4
Cho tam giác ABC (ab>ac), m là trung điểm của bc. Đường thẳng đi qua m vuông góc với tia phân giác của góc a tại h cắt cạnh ab, ac lần lượt tại e và f. Chứng minh
a) 2BME=ACB-B( Đây là các góc)
b) \(\frac{FE^2}{4}+AH^2=AE^2\)
c) BE=CF
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right)\)
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{121}\right)\)
\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{120}{121}\)
\(-A=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot10\cdot12}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot11\cdot11}\)
\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot...\cdot11\right)\left(2\cdot3\cdot4\cdot...\cdot11\right)}\)
\(-A=\frac{1\cdot12}{11\cdot2}=\frac{6}{11}\)
\(A=-\frac{6}{11}\)
\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)
\(B=1-\frac{1}{38}=\frac{37}{38}\)
Bài 1: Cho A= 1.2.3.....29.30; B= 31.32.33.....59.60
a)Chứng minh rằng B chia hết cho 230
b) chứng minh rằng B-A chia hết cho 61
Bài 2: Cho phân số:\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
Chứng minh rằng: a chia hết cho 151
Bài 1: Cho a,b dương và \(2a+3b=ab\) Chứng minh rằng
\(a+b\ge5+2\sqrt{6}\)
Bài 2: Cho a,b dương và \(a+b=ab\) Tìm giá trị lớn nhất của
\(S=\frac{1}{a}+\frac{2}{a+b}\)
Bài 3: Cho a,b là các số dương. Tìm giá trị bé nhất của
\(S=\frac{a^2+b^2}{b^2+2ab}+\frac{b^2}{a^2+2b^2}\)
Bài 4: Cho ba số dương a,b,c thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=9\)Chứng minh rằng
\(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\le\sqrt{3}\)
Bài 5: Cho ba số thực không âm x,y,z thỏa mãn \(x+y+z\ge3\)Chứng minh rằng
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Bài 1.Tìm x biết: a,3.(x + 5) = x – 7 b,|x + 2| - 14 = - 9 c,(6x + 1) chia hết (3x - 1) với x nguyên. Bài 2.Chứng minh rằng: a + (– a – b + c) – ( – b – c + 1) = 2c – 1 Bài 3.a. Chứng minh rằng: 2n + 3 và 4n + 8 nguyên tố cùng nhau với mọi số tự nhiên n. b. Minh nghĩ ra một số tự nhiên có 2 chữ số mà số đó chia 5 dư 4, chia 7 dư 2, chia 9 dư 7. Hỏi Minh nghĩ đến số nào?
Bài 1:
a) \(3\left(x+5\right)=x-7\)
\(\Leftrightarrow3x+15=x-7\)
\(\Leftrightarrow3x+15-x=-7\)
\(\Leftrightarrow2x+15=-7\)
\(\Leftrightarrow2x=-22\)
\(\Leftrightarrow x=-11\)
Vậy \(x=-11\)
Bài 2:
\(\left|x+2\right|-14=-9\)
\(\Leftrightarrow\left|x+2\right|=5\)
Chia 2 trường hợp:
\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)
Vậy \(x\in\left\{3;-7\right\}\)
Hơi vội, sai thì thôi nhé!
bài 1 cho a và b là hai số tự nhiên .biết a chia cho 3 dư 1 ; b chia cho 3 dư 2 .chứng minh rằng ab chia cho 3 dư 2
bài 2 chứng minh rằng biểu thức n (2n-3) -2n (n+1) luôn chia hết cho 5 với mọi số nguyên n
Bài 1:
Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)
b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)
\(\Rightarrow ab\equiv2\left(mod3\right)\)
Vậy ab chia cho 3 dư 2
Cách 2: ( hướng dẫn)
a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )
Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh
Bài 2:
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)
a)Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 5 dư 4, chia cho 7 dư 5, chia cho 11
dư 6 ?
b) Chứng minh rằng \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)
a )
Theo bài ra: (a - 4) chia hết cho 5 => (a - 4) + 20 chia hết cho 5 => a + 16 chia hết cho 5
(a - 5) chia hết cho 7 => (a - 5) + 21 chia hết cho 7 => a + 16 chia hết cho 7
(a - 6) chia hết cho 11 => (a - 6) + 22 chia hết cho 11 => a + 16 chia hết cho 11
=> a + 16 thuộc BC(5; 7; 11)
Mà BCNN(5; 7; 11) = 385
=> a + 16 thuộc B(385) = {0; 385; 770; ...}
=> a thuộc {-16; 369; 754;...}
Vì a là số tự nhiên nhỏ nhất
=> a = 369
b ) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.\)
Ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
.....................
\(\frac{1}{2012^2}=\frac{1}{2012.2012}< \frac{1}{2011.2012}\)
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1-\frac{1}{2012}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}.< \frac{2011}{2012}\)
Mà \(\frac{2011}{2012}< 1\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.......+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)
\(b)\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)
\(< \)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)
\(< \)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(< \)\(1-\frac{1}{2012}\)\(=\frac{2011}{2012}< 1\)
Vậy Biểu thức \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< 1\)
\(a)\)
Theo bài ra: \(\left(a-4\right)⋮5\Rightarrow\left(a-4\right)+20⋮5\Rightarrow a+16⋮5\)
\(\left(a-5\right)⋮7\Rightarrow\left(a-5\right)+21⋮7\Rightarrow a+16⋮7\)
\(\left(a-6\right)⋮11\Rightarrow\left(a-6\right)+22⋮11\Rightarrow a+16⋮11\)
\(\Rightarrow\) \(a+16\in BC\left(5;7;11\right)\)
Mà \(BCNN\left(5;7;11\right)=385\)
\(\Rightarrow\) \(a+16\in B\left(385\right)=\left\{0;385;770;...\right\}\)
\(\Rightarrow\) \(a\in\left\{-16;369;754;...\right\}\)
Vì a là số tự nhiên nhỏ nhất \(\Rightarrow\) \(a=369\)