rút gọn bt \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+21\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(A=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right)\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(A=\left[\frac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{a+b+\sqrt{ab}-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{a+\sqrt{ab}+b}{a-b}\right]\)
\(A=\left[\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\right].\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]\)
\(A=\frac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{a-\sqrt{ab}+b}\)
Điều kiện : a, b\(\ge0\)
Rút gọn:
\(B=\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
Ta có:
\(B=\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{\frac{\left(\sqrt{a}+\sqrt{b}\right)^3\left(\sqrt{a}-\sqrt{b}\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3a\sqrt{a}-3a\sqrt{b}+3\sqrt{a}b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}+\frac{3\left(\sqrt{ab}-b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{3\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3a-3b}{a-b}\)
\(=3\)
=.= hok tốt!!
\(\)Cho biểu thức
\(B=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right)\left(\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right)\)
a, Rút gọn B
b, Tính B khi a=16, b=4
RÚT GỌN CÁC BIỂU THỨC SAU
\(A=\frac{-2}{3}\sqrt{\frac{\left(a-b\right)^3.b^5}{c}}.\frac{9}{4}\sqrt{\frac{c^3}{2\left(a-b\right)}}.\sqrt{98b}\)
\(B=\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}+\sqrt{\frac{1}{ab}}}\right).\sqrt{ab}\)
\(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(2a+2\sqrt{ab}+2b\right)}
\)
a. Rút gọn P
b. Tìm giá trị nguyên của a để giá trị P nguyên
a) P = \(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{\left(2.a+2.\sqrt{ab}+2.b\right)}\)
= \(\left(\frac{3\sqrt{a}.\left(\sqrt{a}-\sqrt{b}\right)-3.a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right).\left(a+\sqrt{ab}+b\right)}\right).\frac{2.\left(a+\sqrt{ab}+b\right)}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\frac{a-2.\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\frac{2}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\frac{2}{a-1}\)
b) P nguyên <=> \(\frac{2}{a-1}\)nguyên => 2 \(⋮\)a - 1
=> ( a- 1 ) = { \(\pm\)1 ; \(\pm\) 2} => a = { -1 ; 0 ; 2 ;3 }
Rút gọn biểu thức
\(\frac{\frac{\left(a-b\right)3}{\left(\sqrt{a}-\sqrt{b}\right)3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}\)
\(\left(\frac{1}{\sqrt{a}+\sqrt{a+1}}+\frac{1}{\sqrt{a}-\sqrt{a-1}}\right):\left(1+\sqrt{\frac{a+1}{a-1}}\right)\)
\(\left(\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a^3}+3\right)\left(a-b\right)}\right)\)
Rút gọn 2 biểu thức trên?
Ai giúp mình với, tks nhiều
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
\(A=\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right).\left(2-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)
\(B=\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
rút gọn biểu thức
Help me!
Ta có: \(A=\left(2+\frac{3+\sqrt{3}}{\sqrt{3}+1}\right)\cdot\left(2-\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\)
\(=\frac{2\left(\sqrt{3}+1\right)+3+\sqrt{3}}{\sqrt{3}+1}\cdot\frac{2\left(\sqrt{3}-1\right)-3+\sqrt{3}}{\sqrt{3}-1}\)
\(=\frac{2\sqrt{3}+2+3+\sqrt{3}}{\sqrt{3}+1}\cdot\frac{2\sqrt{3}-2-3+\sqrt{3}}{\sqrt{3}-1}\)
\(=\frac{3\sqrt{3}+5}{\sqrt{3}+1}\cdot\frac{3\sqrt{3}-5}{\sqrt{3}-1}\)
\(=\frac{2}{2}=1\)