Giá trị của \(A=x+\frac{1}{x}\) với \(x< 0\) thỏa mãn \(x^2+\frac{1}{x^2}=23\)
Giá trị của x thỏa mãn \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
Cho x>0 thỏa mãn x2+\(\frac{1}{x^2}\)=23.Tính giá trị biểu thức : x5+\(\frac{1}{x^5}\).
ta có \(x^2+\frac{1}{x^2}\)
=\(\left(x+\frac{1}{x}\right)^2-2x\frac{1}{x}=\left(x+\frac{1}{x}\right)^2-2\)
=> \(\left(x+\frac{1}{x}\right)^2=25.vì\)\(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=5\)
\(\left(x+\frac{1}{x}\right)^3=x^3+\frac{1}{x^3}+3x+\frac{3}{x}=x^3+\frac{1}{x^3}+15\)
\(\Rightarrow x^3+\frac{1}{x^3}=5^3+15=110\)
\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+x+\frac{1}{x}=x^5+\frac{1}{x^5}+5\)
\(\Rightarrow x^5+\frac{1}{x^5}=23\cdot110-5=2525\)
Vậy...
Tìm giá trị nguyên của x thỏa mãn:
2.22.23.24....2x=32768
Tìm bậc của đơn thức
\(\frac{1}{2}x^2y^5z^3\)
Tìm giá trị x>0 thỏa mãn:
\(\frac{x}{4}=\frac{9}{x}\)
Tìm giá trị x<0 thỏa mãn:
\(\text{|}2x-\frac{1}{2}\text{|}+\frac{3}{7}=\frac{38}{7}\)
\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)
\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)
\(\Leftrightarrow1+2+3+4+..+x=15\)
\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)
\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)
Vậy x=5
Bài 2:
Bậc của đơn thức là 2+5+3=10
Bài 3:
\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)
+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành
\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)
+)TH2: \(x< \frac{1}{4}\) thì pt trở thành
\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)
Vậy x={-9/4;11/4}
1,Giá trị x thỏa mãn:
(x-2)2\(\le\)0
2,Số giá trị của x thỏa mãn:
/\(x+\frac{5}{2}\)/+/\(\frac{2}{5}-x\)/=0
3,Già trị x>0 thỏa mãn:
\(\frac{x}{15}=\frac{y}{9}\)và xy =15
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
1) Giá trị nhỏ nhất của phân thức:\(A=\frac{2x^2}{2x-1}\left(\frac{4x^2+1}{x}-4\right)+4\) là ?
2) Giá trị của x thỏa mãn: \(x+\frac{x}{x+2}+\frac{x+3}{x^2+5x+6}+\frac{x+4}{x^2+6x+8}-1=0\) ?
2) \(ĐKXĐ:x\notin\left\{-2;-3;-4\right\}\)
PT <=> \(x+\frac{x}{x+2}+\frac{x+3}{x^2+3x+2x+6}+\frac{x+4}{x^2+4x+2x+8}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{x+3}{x\left(x+3\right)+2\left(x+3\right)}+\frac{x+4}{x\left(x+4\right)+2\left(x+4\right)}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{x+3}{\left(x+2\right)\left(x+3\right)}+\frac{x+4}{\left(x+2\right)\left(x+4\right)}-1=0\)
<=>\(x+\frac{x}{x+2}+\frac{1}{x+2}+\frac{1}{x+2}-1=0\)
<=>\(x+\frac{x+1+1}{x+2}-1=0\)
<=>\(x+\frac{x+2}{x+2}-1=0\Leftrightarrow x+1-1=0\Leftrightarrow x=0\)
Vậy x=0 thì thỏa mãn PT
c1 Tìm số nguyên tố x thỏa mãn :x^2-4x-21=0
c2/ \(y=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)với x khác +-2
a/Rút gọn biểu thức Y
b/chứng tỏ rằng mọi x thỏa mãn -2<x<2, x khác-1 biểu thức A luôn có giá trị âm
Tìm giá trị nguyên của x thỏa mãn:
2.22.23.24....2x=32768
Tìm bậc của đơn thức
\(\frac{1}{2}.\)x2y5z3
Tìm giá trị x>0 thỏa mãn:
\(\frac{x}{4}=\frac{9}{x}\)
Tìm giá trị x<0 thỏa mãn:
|2x−\(\frac{1}{2}\)|+\(\frac{3}{7}\)=\(\frac{38}{7}\)
2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)
\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3
3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)
4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)
Cho số thực x thỏa mãn ĐK 0=<x=<1 Tìm giá trị lớn nhất của bth \(\frac{x^2}{2-x^2}+\frac{1-x^2}{1+x^2}\)
Câu hỏi của cai j vay - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Cho biểu thức
\(A=\frac{6\cdot x^2+8\cdot x+7}{x^3-1}+\frac{x}{x^2+x+1}+\frac{6}{1-x}\)
Giá trị x<0 thỏa mãn 4*A=x-1
Lớp 8 thì
Hôm nay thi cấp huyện mà
Fải k?//
Thi tốt nghen>>>~~~~
\(A=\frac{6x^2+8x+7}{x^3-1}+\frac{x}{x^2+x+1}+\frac{6}{1-x}\)
<=>\(A=\frac{6x^2+8x+7}{x^3-1}+\frac{\left(x-1\right)x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(-6\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
<=>\(A=\frac{6x^2+8x+7}{x^3-1}+\frac{x^2-x}{x^3-1}+\frac{-6x^2-6x-6}{x^3-1}\)
<=>\(A=\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)<=>\(A=\frac{1}{x-1}\)<=>\(4A=\frac{4}{x-1}\)
Theo đề bài 4A=x-1 => \(4A=\frac{4}{x-1}=x-1\Rightarrow\left(x-1\right)^2=4\Rightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vì x<0 nên x=-1
cho x ,y,z khác 0 thỏa mãn x+y+z=0 Tính giá trị của biểu thức M=\(\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+z^2-y^2}\)
thay z = -(x+y) , y = -(z+x),... vao
=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0