Cho \(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\).CMR: C là số hữu tỉ
Cho M=(x-1)(x+2)(3-x)tìm x để M<0
Cho C=\(\frac{m^3=3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)Chứng minh c là số hữu tỉ
Cho phân số:
\(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)
a) CMR: C là phân số tối giản
b) Phân số C viết được dưới dạng số thập phân hữu hạn hay số thập phân vô hạn tuần hoàn? Vì sao?
a) \(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{m^3+2m^2+m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{m^2.\left(m+2\right)+m.\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{\left(m+2\right).\left(m^2+m\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{\left(m+2\right).m.\left(m+1\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{a}{a+1}\)
Gọi d = ƯCLN(a; a + 1) (d \(\in\) N*)
\(\Rightarrow\begin{cases}a⋮d\\a+1⋮d\end{cases}\) \(\Rightarrow\left(a+1\right)-a⋮d\)
\(\Rightarrow1⋮d\)
Mà d \(\in\) N* => d = 1
=> ƯCLN(a; a + 1) = 1
=> C là phân số tối giản (đpcm)
b) Ta thấy: m.(m + 1).(m + 2) là tích 3 số nguyên liên tiếp nên\(m\left(m+1\right)\left(m+2\right)⋮3\)
Mà \(5⋮̸3\); \(6⋮3\)
\(\Rightarrow\begin{cases}\left(m+2\right).m.\left(m+1\right)+5⋮̸3\\m\left(m+1\right)\left(m+2\right)+6⋮3\end{cases}\)
Như vậy, đến khi tối giản, phân số C vẫn có tử \(⋮3;\ne2;5\) nên phân số C viết được dưới dạng số thập phân vô hạn tuần hoàn.
Cho phân số:
\(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+5}\left(m\in N\right)\)
a) CMR: C là phân số tối giản
b) Phân số C viết được dưới dạng số thập phân hữu hạn hay số thập phân vô hạn tuần hoàn? Vì sao?
a: \(C=\dfrac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=\dfrac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=1\)
Do đó: C là phân số tối giản
b: Phân số C=1/1 được viết dưới dạng là số thập phân hữu hạn
Cho phân số \(A=\frac{m^3+3m^2+2m+5}{m.\left(m+1\right).\left(m+2\right)+6}\)(m E N)
a, CMR A là phân số tối giản
b, Phân số A viết dc dưới dạng STP hữu hạn hay STP vô hạn tuần hoàn?Vì sao?
a) \(A=\frac{m^3+3m^2+2m+5}{m^3+3m^2+2m+6}\) m thuộc N
Với m thuộc N thì: m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6 là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau, hay
U (m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6) = 1
hay A là phân số tối giản.
b) \(A=\frac{m^3+3m^2+2m+5}{m^3+3m^2+2m+6}=1-\frac{1}{m^3+3m^2+2m+6}=1-\frac{1}{m\left(m+1\right)\left(m+2\right)+6}\)
m(m+1)(m+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6.
=> m(m+1)(m+2) + 6 chia hết cho 6.
mà 1 chia 6 là số TP vô hạn tuần hoàn.
=> A là số TP vô hạn tuần hoàn.
<br class="Apple-interchange-newline"><div id="inner-editor"></div>A=m3+3m2+2m+5m3+3m2+2m+6 m thuộc N
Với m thuộc N thì: m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6 là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau, hay
U (m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6) = 1
hay A là phân số tối giản.
Cho phân số : \(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)
a)Chứng tỏ C là phân số tối giản
b)Phân số C viết được dưới dạng số thập phân hữu hạn hay số thập phân vô hạn tuần hoàn?Vì sao?
\(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2+6\right)}\)
a. Chứng minh rằng C là phân số tối giản?
b. Phân số C viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn? Vì sao?
cho phân số \(A=\frac{m^3+3m^3+2m+5}{m\left(m+1\right)\left(m+2\right)+6};\left(m\right)thuocN\)
a) CMR \(A\) là phân số tối giản
b)Phân số \(A\) co biễu diễn thập phân hữu hạn hay vô hạn tuần hoàn vì sao
a ) \(A=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
Vì m(m + 1)(m + 2) + 5 và m(m + 1)(m + 2) + 6 là hai số tự nhiên liên tiếp nên chúng là NT cùng nhau hay A là phân số tối giản
b ) Vì m(m + 1)(m + 2) luôn chia hết cho 3 ( vì là tích 3 số tự nhiên liên tiếp )
6 chia hết cho 3
=> m(m + 1)(m + 2) + 6 chia hết cho 3
Mà theo a ) A là phân số tối giản
\(\Rightarrow A=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
là số thập phân vô hạn tuần hoàn
Cho phân số C=\(\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\left(m\in N\right)\)
a) Chứng tỏ C là phân số tối giản
b)C viết được dưới dạng số TPHH hay số TPVHTH? Vì sao?
cho \(A=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\left(m\in N\right)\).chứng tỏ A là phân số tối giản
gọi ƯCLN cũa tử và mẫu cũa phân số A là d(d \(\in\) N, d> 1)
Ta có:\(\left(m^3+3m^2+2m+5\right)\)chia hết cho d
và \(m\left(m+1\right)\left(m+2\right)+6\) chia hết cho d
Suy ra:\(m\left(m+1\right)\left(m+2\right)+6-\left(m^3+3m^2+2m+5\right)\)chia hết cho d
Hay 1 chia hết cho d=>d=1
=>đpcm
bạn tôi học giỏi toán triệt tiêu kiểu gì mà siêu ghế :)) mẫu và tử cùng là tích thì mới triệt tiêu đc. vẫn còn cộng thế kia mà triệt như siêu nhân :))