so sanh 291 va 535
So sánh :
291 và 535
291 và 535
291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927 > 31257 => 291 > 535
Vậy 291 > 535
So sánh: 291 và 535
Ta có: 291 > 290 = (25)18 = 3218
535 < 536 = (52)18 = 2518.
Vì 32 > 25 nên 3218 > 2518, do đó ta có : 291 > 3218 > 2518 > 535.
Vậy 291 > 535.
So sánh 291 và 535
so sánh 291 và 535 giải giúp mình
`2^{91}=(2^{13})^{7}=8192^{7}`
`5^{35}=(5^{5})^{7}=3125^{7}`
Vì `8192^{7}>3125^{7}`
`->2^{91}>5^{35}`
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Mà \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
\(2^{91}=\left(2^{13}\right)^7\)
\(5^{35}=\left(5^5\right)^7\)
mà \(2^{13}>5^5\)
nên \(2^{91}>5^{35}\)
So sánh :
a) 1010 và 48.5010
b) 2233 và 3322
d) 291 và 535
Bài 1 : Tìm x, biết :
a. 2x = 16 b. 3x+1 = 9x
c. 23x+2 = 4x+5 d. 32x-1 = 243
Bài 2 : So sánh :
a. 2225 và 3150 b. 291 và 535 c. 9920 và 999910
Bài 3 : Chứng minh các đẳng thức :
a. 128 . 912 = 1816 b. 7520 = 4510 . 530 .
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
cho tam giac ABC tren canh BC lay 1 diem Q sao cho CQ =BQ tu Q ke sang AC tai K KB cac AQ tai I
so sanh dien tich tam giac abk va aqb
so sanh dien tich tam giac cbk va abk
so sanh ck va ak
so sanh ab va kq
cho hinh thang ABCD goi K la diem chinh giua cuaDC. AC va BD cat tai M
A, so sanh dien tich AMB va CMB
b, so sanh dien tich ADKM va dien tich CBMK
C, Keo dai KM cat AB tai M . So sanh AN va NB
so sanh 34000 va 92000
so sanh 2332 va 3223
a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Mà \(3^{4000}=3^{4000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
Vậy \(3^{4000}=9^{2000}\)
b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{333} < 3^{222}\)
\(\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
a) \(3^{4000}\) và \(9^{2000}\)
ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)
=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)
b)\(2^{332}\) và \(3^{223}\)
\(2^{332}\) <\(2^{333}\) mà \(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)
\(3^{223}\) >\(3^{222}\) mà \(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)
từ (1 và 2),suy ra:8111<9111 hay 2332<3223
so sanh 2 phan so khong quy dong tu so va mau so hay so sanh phan so \(\frac{23}{48}\)va \(\frac{47}{92}\)
So sánh không quy đồng thì:
\(\frac{23}{48}< \frac{47}{92}\)
k nha
23/48< 47/92
chúc bạn học tốt
So sánh hai p.số mà ko quy đồng:
\(\frac{23}{48}< \frac{47}{92}\)
Chúc học tốt