Tìm tất cả các cặp số nguyên (x,y) thỏa mãn y2+ y = x4+ x3+ x2 +x
Tìm tất cả các cặp số nguyên dương (xy) thỏa mãn x2+y2-2(x+y) = xy
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
Tiếp tục phần tiếp theo
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)
⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài
Tìm tất cả các cặp số nguyên x, y thỏa mãn: x3 + x = y
tìm tất cả các cặp số nguyên (x, y) thỏa mãn: x(x2 - y) + (y - 3)(x2 + 1) = 0
Tìm tất cả các số nguyên x, y thỏa mãn x2+y2+xy-x-y=1
Tìm tất cả các cặp số nguyên ( x,y ) thỏa mãn
x3 - x2y + x + 3y + 1 = 0
Lời giải:
PT $\Leftrightarrow x^3+x+1-y(x^2-3)=0$
$\Leftrightarrow y=\frac{x^3+x+1}{x^2-3}$ (hiển nhiên $x^2-3\neq 0$ với mọi $x$ nguyên)
Để $y$ nguyên thì $\frac{x^3+x+1}{x^2-3}$ nguyên
$\Leftrightarrow x^3+x+1\vdots x^2-3$
$\Rightarrow x(x^2-3)+4x+1\vdots x^2-3$
$\Rightarrow 4x+1\vdots x^2-3$
Hiển nhiên $4x+1\neq 0$ nên $|4x+1|\geq x^2-3$
Nếu $x\geq \frac{-1}{4}$ thì $4x+1\geq x^2-3$
$\Leftrightarrow x^2-4x-4\leq 0$
$\Leftrightarrow (x-2)^2\leq 8<9$
$\Rightarrow -3< x-2< 3$
$\Rightarrow -1< x< 5$
$\Rightarrow x\in \left\{0; 1; 2; 3; 4\right\}$.
Nếu $x< \frac{-1}{4}$ thì $-4x-1\geq x^2-3$
$\Leftrightarrow x^2+4x-2\leq 0$
$\Leftrightarrow (x+2)^2-6\leq 0$
$\Leftrightarrow (x+2)^2\leq 6< 9$
$\Rightarrow -3< x+2< 3$
$\Rightarrow -5< x< 1$
$\Rightarrow x\in\left\{-4; -3; -2; -1\right\}$
Đến đây bạn thay vào tìm $y$ thôi
Tìm tất cả các cặp số nguyên x, y thỏa mãn: y.(x2 + 2) = x + 2
Tìm tất cả các cặp số nguyên x, y thỏa mãn:
8|x - 2017| = 25 - y2
\(8\left|x-2017\right|=25-y^{2\text{}}\)
\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)
Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)
Tìm các số nguyên x, y thỏa mãn x 4 + x 2 − y 2 − y + 20 = 0. (1)
Ta có (1) ⇔ x 4 + x 2 + 20 = y 2 + y
Ta thấy: x 4 + x 2 < x 4 + x 2 + 20 ≤ x 4 + x 2 + 20 + 8 x 2 ⇔ x 2 ( x 2 + 1 ) < y ( y + 1 ) ≤ ( x 2 + 4 ) ( x 2 + 5 )
Vì x, y ∈ Z nên ta xét các trường hợp sau
+ TH1. y ( y + 1 ) = ( x 2 + 1 ) ( x 2 + 2 ) ⇔ x 4 + x 2 + 20 = x 4 + 3 x 2 + 2 ⇔ 2 x 2 = 18 ⇔ x 2 = 9 ⇔ x = ± 3
Với x 2 = 9 ⇒ y 2 + y = 9 2 + 9 + 20 ⇔ y 2 + y − 110 = 0 ⇔ y = 10 ; y = − 11 ( t . m )
+ TH2 y ( y + 1 ) = ( x 2 + 2 ) ( x 2 + 3 ) ⇔ x 4 + x 2 + 20 = x 4 + 5 x 2 + 6 ⇔ 4 x 2 = 14 ⇔ x 2 = 7 2 ( l o ạ i )
+ TH3: y ( y + 1 ) = ( x 2 + 3 ) ( x 2 + 4 ) ⇔ 6 x 2 = 8 ⇔ x 2 = 4 3 ( l o ạ i )
+ TH4: y ( y + 1 ) = ( x 2 + 4 ) ( x 2 + 5 ) ⇔ 8 x 2 = 0 ⇔ x 2 = 0 ⇔ x = 0
Với x 2 = 0 ta có y 2 + y = 20 ⇔ y 2 + y − 20 = 0 ⇔ y = − 5 ; y = 4
Vậy PT đã cho có nghiệm nguyên (x;y) là :
(3;10), (3;-11), (-3; 10), (-3;-11), (0; -5), (0;4).
tìm tất cả các cặp số nguyên x, y thỏa mãn x2+x = 32019y+1
- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)
\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)
- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1
Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2
\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên
Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)
@ Ha Dung vì khi y < 0 thì y = -k (k N)
⇒ 32019y = 3-2019k = ( N)
()2019k không phải là số nguyên vậy 32019y không phải là số nguyên em nhé.
tìm các số nguyên x,y thỏa mãn y2+3y=x4+x2+18
\(\Leftrightarrow\)\(4y^2+12y=4x^4+4x^2+72\)
\(\Leftrightarrow\left(2y+3\right)^2=\left(2x^2+1\right)^2+80\)
\(\Leftrightarrow\left(2y+3\right)^2-\left(2x^2+1\right)^2=80\)
\(\Leftrightarrow\left(2y+3-2x^2-1\right)\left(2y+3+2x^2+1\right)=80\)
\(\Leftrightarrow\left(y-x^2+1\right)\left(y+x^2+2\right)=20\)
Do \(x,y\in Z\) => \(y+1-x^2;y+x^2+2\in Z\)
=>\(y+1-x^2;y+x^2+2\inƯ\left(20\right)\)
Kẻ bảng làm nốt nha.