Hình bên biết góc A=1100, góc B=700, góc C=600
a) Chứng minh AB//CD
b)Tính góc ABC
c) BH vuông góc CD, chứng tỏ BH vuông góc AB
1. Cho hình thang ABCD có góc A = góc D = 90 độ , đáy nhỏ AB = a , cạnh bên BC = 2 a . Gọi M , N lần lượt là trung điểm AD , AB
a / Tính số đo các góc ABC , BAN
b/ Chứng minh tam giác NAD đều
c/ Tính MN theo a
2. a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
3. Cho tứ giác ABCD :
a/ Chứng minh rằng AB + CD < AC + BD
b/ Cho biết AB + BD < hoặc = AC + CD
Chứng minh rằng AB < AC
4. Cho hình thang ABCD có AC vuông góc BD . CHứng minh rằng :
a/ AB^2 + CD^2 = AD^2 + BC^2
b/ ( AB + CD )^2 = AC^2 + BD^2
bạn hỏi thế này thì chả ai muốn làm -_- dài quá
Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!
dài quà làm sao mà có thòi gian mà trả lời .bạn hỏi ít thoi chứ
Cho hình thang cân ABCD (AB//CD, AB>CD) có CD=a, góc A cộng góc B=1/2 (góc C cộng góc D). Đường chéo AC vuông góc với cạnh bên BC.
a) Tính các góc của hình thang
b) Chứng minh AC là phân giác của góc DAB.
Cho hình thang ABCD ( AB//CD, AB<CD ) có góc C = góc D = 60 độ, CD=2AD. Chứng minh 4 điểm A,B,C,D cùng thuộc một đường tròn.
Gọi O là trung điểm của CD.
Hình thang ABCD có ^C=^D=600 => ABCD là hình thang cân => AD=BC.
Mà CD=2AD => CD=2BC.
Do O là trung điểm CD => AD=OD=OC=BC (1)
Xét tam giác AOD: ^D=600; AD=OD => Tam giác AOD đều => AD=DO=AO (2)
Tương tự: Tam giác BOC đều => BC=OC=BO (3)
Từ (1); (2) và (3) => OA=OB=OC=OD => 4 điểm A,B,C,D cùng nằm trên đường tròn tâm O (đpcm)
Cho hình thang cân ABCD ( BC // AD); góc A = 60 , AB = AC
a) Tính các góc B , góc C ,góc D
b) Chứng minh AC là tia phân giác của góc BAD và AC vuông góc với CD
b: Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BCA}=\widehat{CAD}\)
nên \(\widehat{BAC}=\widehat{DAC}\)
hay AC là tia phân giác của \(\widehat{BAD}\)
Cho hình thang cân ABCD (AB // CD , AB>CD) có CD=a , A + B = 1/2(C+D) Đường chéo AC vuông góc với cạnh bên BC.
A) Tính các góc của hình thang
B) Chứng minh AC là phân giác góc DAB
a) Ta có ABCD là hình thang cân
=> \(\widehat{D}=\widehat{C},\widehat{A}=\widehat{B}\)(1)
Mà: \(\widehat{A}+\widehat{B}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)(2)
Từ (1), (2)
=> \(2.\widehat{A}=\frac{1}{2}.2.\widehat{D}\Leftrightarrow\widehat{D}=2.\widehat{A}\)(3)
Mặt khác: \(\widehat{A}+\widehat{D}=180^o\)(4)
Từ (3), (4)
=> \(\widehat{A}=60^o\Rightarrow\widehat{D}=120^o\)
=> \(\widehat{B}=60^o;\widehat{C}=60^o\)
b) Ta có: \(\widehat{C}=\widehat{C_1}+\widehat{C_2}\Rightarrow\widehat{C_1}=\widehat{C}-\widehat{C_2}=120^o-90^o=30^o\)
=> \(\widehat{A_1}=\widehat{C_1}=30^o\left(soletrong\right)\)
Mà \(\widehat{A}=\widehat{A_1}+\widehat{A_2}\Rightarrow\widehat{A_2}=30^o\)
Từ 2 điều trên suy ra góc A1 = góc A2
=> AC là phân giác góc DAB
a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Cho hình sẽ,biết: a vuông góc với b,a vuông góc với c, góc bAB=60 độ,góc BCD= 60 độ,góc BDC=50 độ
a) chứng minh b//c
b) chứng minh c//d
c) Tính số đo góc ABD
Hình thang cân ABCD (AB// CD) có ∠ (A ) = 70 0 . Khẳng định nào dưới đây là đúng ?
A. ∠ (C ) = 110 0
B. ∠ (B ) = 110 0
C. ∠ (C ) = 70 0
D. ∠ (D ) = 70 0
Chọn A. ∠ (C ) = 110 0
Ta có : ∠ (A )+ ∠ (D )= 180 0 ( hai góc trong cùng phía)
=> ∠ (D )= 180 0 - ∠ (A )= 180 0 - 70 0 = 110 0
mà ∠ (C )= ∠ (D ) (tính chất hình thang cân ) => ∠ (C )= ∠ (D )= 110 0
cho hình thang ABCD(AB//CD),biết góc D=60.Tính góc A,góc B,góc C
Vì \(AB//CD\) nên \(\widehat{A}+\widehat{D}=180^0\Rightarrow\widehat{A}=180^0-60^0=120^0\)
Ko đủ đề để tính \(\widehat{B};\widehat{C}\)