Phân tích đa thức sau thành nhân tử:
x2-x-1
phân tích đa thức sau thành nhân tử
a) (x+2)(x2-2x+1)
Phân tích đa thức sau thành nhân tử: x2 – x
Phân tích đa thức sau thành nhân tử: x2 – x – 6
x2 – x – 6
= x2 + 2x – 3x – 6
(Tách –x = 2x – 3x)
= x(x + 2) – 3(x + 2)
(có x + 2 là nhân tử chung)
= (x – 3)(x + 2)
Phân tích đa thức sau thành nhân tử x2 –xy + x – y
Cách 1: Nhóm hai hạng tử thứ 1 và thứ 2, hạng tử thứ 3 và thứ 4
x2 – xy + x – y
= (x2 – xy) + (x – y)
(Nhóm thứ nhất có nhân tử chung là x)
= x(x – y) + (x – y)
(Xuất hiện nhân tử chung x – y)
= (x + 1)(x – y)
Cách 2: Nhóm hạng tử thứ 1 và thứ 3 ; hạng tử thứ 2 và thứ 4
x2 – xy + x – y
= (x2 + x) – (xy + y)
(nhóm thứ nhất có nhân tử chung là x ; nhóm thứ hai có nhân tử chung là y)
= x.(x + 1) – y.(x + 1)
(Xuất hiện nhân tử chung x + 1)
= (x – y)(x + 1)
Phân tích đa thức sau thành nhân tử: x2 – 4 + (x – 2)2
Cách 1: x2 – 4 + (x – 2)2
(Xuất hiện hằng đẳng thức (3))
= (x2– 22) + (x – 2)2
= (x – 2)(x + 2) + (x – 2)2
(Có nhân tử chung x – 2)
= (x – 2)[(x + 2) + (x – 2)]
= (x – 2)(x + 2 + x – 2)
= (x – 2)(2x)
= 2x(x – 2)
Cách 2: x2 – 4 + (x – 2)2
(Khai triển hằng đẳng thức (2))
= x2 – 4 + (x2 – 2.x.2 + 22)
= x2 – 4 + x2 – 4x + 4
= 2x2 – 4x
(Có nhân tử chung là 2x)
= 2x(x – 2)
Phân tích đa thức thành nhân tử:
(x2+x+1)(x2+x+5)-21
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21=x^4+x^3+5x^2+x^3+x^2+5x+x^2+x+5-21=x^4+2x^3+7x^2+6x-16=\left(x-1\right)\left(x+2\right)\left(x^2+x+8\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+1+4\right)-21\)
\(=\left(x^2+x+1\right)^2+4\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)^2-3\left(x^2+x+1\right)+7\left(x^2+x+1\right)-21\)
\(=\left(x^2+x+1\right)\left(x^2+x-2\right)+7\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2+x+8\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+5\right)-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)+5-21\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-16\)
\(=\left(x^2+x+8\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+8\right)\left(x+2\right)\left(x-1\right)\)
Kết quả phân tích đa thức x2 + 2xy + y2 – 9x – 9y thành nhân tử là :
A.( x + y + 3) ( x + y – 3) (x + y )
B.( x + y – 9) (x + y )
C. ( x + y – 3) (x + y )
D. ( x – y – 9) (x – y )
Phân tích đa thức sau thành nhân tử : x2 -x-y2 -y, ta được kết quả là: A. (x+y)(x-y-1) B. (x-y)(x+y+1) C.(x+y)(x+y-1) D.(x-y)(x+y-1)
Phân tích đa thức sau thành nhân tử : x2 -4x-y2 +4 ta được kết quả là:
A .(x+2-y)(x+2+y)
B. (x-y+2)(x+y-2)
C. (x-2-y)(x-2+y)
D.(x-y-2)(x-y+2)
Đa thức 25 – a2 + 2ab + b2 + được phân tích thành:
A. (5 + a – b)(5 – a – b)
B. (5 + a + b)(5 – a – b)
C. (5 + a + b)(5 – a + b)
D. (5 + a – b)(5 – a + b)
Phân tích các đa thức sau thành nhân tử
a) x 2 − 2 x + x − 2
b) x 2 + 2 x y + y 2 − 9
x/y có phải đơn thức ko
phân tích đa thức sau thành nhân tử
a) x2-2x+1
b)x2+2xy-25+y2
c)5x2-10xy
d)x2-y2+x-y
Lời giải:
$\frac{x}{y}$ không phải đơn thức bạn nhé.
a. $x^2-2x+1=(x-1)^2$
b. $x^2+2xy-25+y^2=(x^2+2xy+y^2)-25=(x+y)^2-5^2=(x+y-5)(x+y+5)$
c. $5x^2-10xy=5x(x-2y)$
d. $x^2-y^2+x-y=(x^2-y^2)+(x-y)=(x-y)(x+y)+(x-y)$
$=(x-y)(x+y+1)$
phân tích đa thức (x2- x+ 1)2 - 5x( x2 -x +1)2 + 4x2 thành nhân tử
-Đặt \(t=\left(x^2-x+1\right)\)
\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-4xt-xt+4x^2\)
\(=t\left(t-4x\right)-x\left(t-4x\right)\)
\(=\left(t-4x\right)\left(t-x\right)\)
\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)
\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)