Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)CMR
a)\(\frac{a-c}{a+c}\)=\(\frac{b-d}{b+d}\)
b)\(\frac{a}{a+c}\)=\(\frac{b}{b+d}\)
Mọi nguời giúp mk vs nha
a) cho a,b>0 CMR \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b) cho a,b,c,d>0 CMR \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\)
PLEASE !!! GIÚP MK VS MK CẦN RẤT GẤP LÀM ƠN!!!
a, Có : (a-b)^2 >= 0
<=> a^2+b^2-2ab >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :
a+b/ab >= 4/a+b
<=> 1/a+1/b >= 4/a+b
=> ĐPCM
Dấu "=" xảy ra <=> a=b>0
Tk mk nha
Biến đổi tương đương
<=> (a + b)/ab >/ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế
<=> (a + b)2 >/ 4ab
<=> a2 + 2ab + b2 >/ 4ab
<=> a2 - 2ab + b2 >/ 0
<=> (a - b)2 >/ 0 luôn đúng a,b > 0
=>đpcm
Dấu " = " xảy ra ⇔ a = b
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}CMR(\frac{a+b+c}{b+c+d})^3=\frac{a}{d}\)
Giúp mk với
cho (a+b-c)/d=(b+c-d)/a=(c+d-a)/b=(d+a-b)/c
cmr: P là số nguyên vs P= \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{a+b}{b}=\frac{c+d}{d}\)
Mọi người giúp nhanh nha mình cần gấp!
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\\\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\end{cases}\left(đpcm\right)}\)
Vậy,......
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
\(\Rightarrow\frac{bk+b}{b}=\frac{dk+d}{d}\)
\(\Rightarrow\frac{b.\left(k+1\right)}{b}=\frac{d.\left(k+1\right)}{d}\)
\(\Rightarrow k+1=k+1\left(đpcm\right)\)
Cho 4 số a,b,c,d > 0
a) Cho $b=\frac{a+c}{2}$ và $c=\frac{2bd}{b+d}$ C/m $\frac{a}{b}=\frac{c}{d}$
b) Từ $\frac{a}{b}=\frac{c}{d}$ C/m $\frac{2015a-b}{a}=\frac{2015c-d}{c}$
Mọi ngừi giúp mk với!!! Giải thích luôn nhé, ai làm đc và giải rõ ràng thì mk tick cho
giúp gấp vs mấy bn:
Tìm a,b,c ϵ Q
a)
\(\frac{a}{b}=\frac{c}{d}\left(ac\ne bd\right)Cm:\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b)CMR nếu \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)thì\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
b)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}=\frac{a^3}{b^3}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho a , b , c , d sao cho a + b + c + d # 0
Biết \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=k\). Tính giá trị của k.
Mọi người giúp mk nha.Ai nhanh mk tick.
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(k=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy k=3
Giải:
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)
\(=\frac{3.\left(a+b+c+d\right)}{a+b+c+d}=3\)
\(\Rightarrow k=3\)
Vậy \(k=3\)
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
cho a,b,c,d là các số dương. cmr
a, \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}\frac{d}{d+a+b}< 2\)
b, \(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)