Áp dụng tính chất của dãy tỉ số bằng nhau :
\(k=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy k=3
Giải:
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)
\(=\frac{3.\left(a+b+c+d\right)}{a+b+c+d}=3\)
\(\Rightarrow k=3\)
Vậy \(k=3\)