áp dụng tính chất dẫy tỉ số = nhau ta được
b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d= b+c+d+c+d+a+a+b+d+a+b+c / a+b+c+d = 3
do b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d = k
suy ra k =3 .đơn giản vậy thôi
áp dụng tính chất dẫy tỉ số = nhau ta được
b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d= b+c+d+c+d+a+a+b+d+a+b+c / a+b+c+d = 3
do b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d = k
suy ra k =3 .đơn giản vậy thôi
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) ( a - b \(\ne\) 0, c - d \(\ne\) 0 ) ta có thể suy ra tỉ lệ thức
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
1. Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) (với b+d \(\ne\) 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)
2. Cho a,b,c,d \(\ne\) 0 . Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
Cho a , b , c , d sao cho a + b + c + d # 0
Biết \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=k\). Tính giá trị của k.
Mọi người giúp mk nha.Ai nhanh mk tick.
Cho 4 số a,b,c,d sao cho a+b+c+d khác 0
Biết \(\frac{b+c+d}{a}\) = \(\frac{c+d+a}{b}\) = \(\frac{d+a+b}{c}\) = \(\frac{a+b+c}{d}\) = k
Tính giá trị của k
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d},b\ne0,d\ne0\).Chứng tỏ rằng nếu \(a\ne\mp b,c\ne\mp d\) thì ta có các tỉ lệ thức:
\(\frac{a}{a+b}=\frac{c}{c+d},\frac{a}{a-b}=\frac{c}{c-d},\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) ( a , b , c , d \(\ne\) 0 ; a \(\ne\) dương hoặc âm b; c \(\ne\) dương hoặc âm d) hãy suy ra các tỉ lệ thức sau:
a) \(\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(\frac{a-b}{b}=\frac{c-d}{d}\)
c) \(\frac{a+b}{a}=\frac{c+d}{d}\)
d) \(\frac{a-b}{b}=\frac{c-d}{c}\)
e) \(\frac{a}{a+b}=\frac{c}{c+d}\)
f) \(\frac{a}{a-b}=\frac{c}{c-d}\)
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!
cho a+b+c+d\(\ne\) 0 và \(\frac{a}{b+c+d}\) === \(\frac{b}{a+c+d}\) ===\(\frac{c}{a+b+d}\) === \(\frac{d}{a+b+c}\)
tìm giá trị của A=\(\frac{a+b}{c+d}\) + \(\frac{b+c}{a+d}\) +\(\frac{c+d}{a+b}\) + \(\frac{d+a}{b+c}\)
các bạn giúp vs mai nộp oy làm ơn mình cảm ơn trước
a ) Tìm x để : \(\frac{x^2-1}{x^2}\le0\)
b ) Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{qb}{cd}\) a ,b , c , d \(\ne\) 0 , c \(\ne\) + d . Chứng minh : \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=\frac{d}{c}\)
c ) Cho P = \(\frac{5}{\sqrt{x}-3}\) . Tìm x \(\in\) Z để P \(\in\) Z
a) Tìm giá trị nhỏ nhất của biểu thức
A = | x - 2017 | + | 2017 - x | + \(\frac{1}{2}\)
b) Cho
\(\frac{a}{b+c+d}=\frac{b}{c+a+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
biet a , b, c, d \(\ne\) 0 . Tính tỉ số của nó