\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{8}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
a)\(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
c) \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
d)\(\sqrt{7+2\sqrt{10}}-\sqrt{3-2\sqrt{2}}\)
a) \(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)
b) \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}=2+\sqrt{3}-1-\sqrt{3}=1\)
c) \(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}+1+\sqrt{7}-1=2\sqrt{7}\)
d) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{2}+1=\sqrt{5}+1\)
THỰC HIỆN PHÉP TÍNH
1,\(\sqrt{3+\sqrt{5}}.\sqrt{2}\)
2,\(\sqrt{3-\sqrt{5}.\sqrt{8}}\)
3,\((\sqrt{\dfrac{3}{4}}-\sqrt{3}+5\sqrt{\dfrac{4}{3})}.\sqrt{12}\)
4,\((\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{7}):\sqrt{7}\)
5, \(\sqrt{36-12\sqrt{5}}:\sqrt{6}\)
6,\(\sqrt{3-\sqrt{5}:}\sqrt{2}\)
1: \(\sqrt{3+\sqrt{5}}\cdot\sqrt{2}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
3) \(\left(\sqrt{\dfrac{3}{4}}-\sqrt{3}+5\cdot\sqrt{\dfrac{4}{3}}\right)\cdot\sqrt{12}\)
\(=\left(\dfrac{\sqrt{3}}{2}-\dfrac{2\sqrt{3}}{2}+5\cdot\dfrac{2}{\sqrt{3}}\right)\cdot\sqrt{12}\)
\(=\dfrac{17\sqrt{3}}{6}\cdot2\sqrt{3}\)
\(=\dfrac{34\cdot3}{6}=\dfrac{102}{6}=17\)
Thực hiện phép tính:
a, M = \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
b, N = \(\sqrt{8-2\sqrt{7}}\) - \(\sqrt{8+2\sqrt{7}}\)
a)
\(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{4+4\sqrt{5}+5}-\sqrt{4-4\sqrt{5}+5}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)
\(=2+\sqrt{5}-\left(\sqrt{5}-2\right)\) (vì \(2+2\sqrt{5}>0;2-\sqrt{5}< 0\) )
\(=2+\sqrt{5}-\sqrt{5}+2\\ =4\)
b)
\(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)
\(=\sqrt{7}-1-\left(\sqrt{7}+1\right)\) (vì \(\sqrt{7}-1>0;\sqrt{7}+1>0\) )
\(=\sqrt{7}-1-\sqrt{7}-1\\ =-2\)
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}=\sqrt{\frac{2\left(4-\sqrt{7}\right)}{2}}-\sqrt{\frac{2\left(4+\sqrt{7}\right)}{2}}+\sqrt{2}\)
=\(\sqrt{\frac{8-2\sqrt{7}}{2}}-\sqrt{\frac{8+2\sqrt{7}}{2}}+\sqrt{2}\)
=\(\sqrt{\frac{\left(\sqrt{7}-1\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{7}+1\right)^2}{2}}+\sqrt{2}\)
=\(\frac{\sqrt{7}-1}{\sqrt{2}}-\frac{\sqrt{7}+1}{\sqrt{2}}+\sqrt{2}\)
=\(\frac{-2}{\sqrt{2}}+\sqrt{2}\)
=\(-\sqrt{2}+\sqrt{2}\)
=0
Giải phương trình:
e) \(\sqrt{x^2}=\left|-8\right|\)
Tính:
e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
e) \(\sqrt{x^2}=\left|-8\right|\Rightarrow\left|x\right|=8\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}=\sqrt{\dfrac{8-2\sqrt{7}}{2}}-\sqrt{\dfrac{8+2\sqrt{7}}{2}}+\sqrt{2}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}+\sqrt{2}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}+\sqrt{2}\)
\(=\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}+\sqrt{2}=\dfrac{\sqrt{7}-1}{\sqrt{2}}-\dfrac{\sqrt{7}+1}{\sqrt{2}}+\sqrt{2}\)
\(=-\dfrac{2}{\sqrt{2}}+\sqrt{2}=-\sqrt{2}+\sqrt{2}=0\)
f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
\(=\sqrt{\dfrac{12+2\sqrt{11}}{2}}-\sqrt{\dfrac{12-2\sqrt{11}}{2}}+3\sqrt{2}\)
\(=\sqrt{\dfrac{\left(\sqrt{11}\right)^2+2.\sqrt{11}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}\right)^2-2.\sqrt{11}.1+1^2}{2}}+3\sqrt{2}\)
\(=\sqrt{\dfrac{\left(\sqrt{11}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}-1\right)^2}{2}}+3\sqrt{2}\)
\(=\dfrac{\left|\sqrt{11}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{11}-1\right|}{\sqrt{2}}+3\sqrt{2}=\dfrac{\sqrt{11}+1}{\sqrt{2}}-\dfrac{\sqrt{11}-1}{\sqrt{2}}+3\sqrt{2}\)
\(=\dfrac{2}{\sqrt{2}}+3\sqrt{2}=\sqrt{2}+3\sqrt{2}=4\sqrt{2}\)
Rút gọn
A=\(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)7
B=\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
A= \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\)\(1+\sqrt{7}+\sqrt{7}-1=2\sqrt{7}\)
\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
=\(\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=\)\(\sqrt{5}+2+\sqrt{5}-2=2\sqrt{5}\)
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)
\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)
\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)
b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)
\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)
\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)
b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)
c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)
\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)