Mn giúp mk vs
Cho hình thang cân ABCD.trên DC lấy K sao choCK=AB.
a/ chứng minh AK=BC ; AK//BC
b/ gọi M là trung điểm DK. chứng minh AM vuông góc DK
cho hình thang ABCD có A=D=90 có DC=2AB=2AD trên AB lấy M sao cho DM vuông với Mx Mx cắt BC tại N chứng minh DM=MN
Cho tam giác ABC cân tại A, lấy M bất kì thuộc cạnh AB. Trên tia đối tia CA lấy N sao cho CN=BM. Vẽ ME và NE lần lượt vuông góc với đường thẳng BC. Gọi I là giao điểm của MN và BC. Trên AC lấy diểm D sao cho CD=CN.
a, Chứng minh: IE=IF
b, Chứng minh: tứ giác BMDC là hình thang cân
cho tam giác ABC vuông tại A(AB<AC).Gọi I,M,K lần lượt là trung điểm của AB,BC,AC.
a/chứng minh rằng tứ giác AIMK là hcn
b/trên tia MI lấy E sao cho I là trung điểm ME,trên tia MK lấy F sao cho K là trung điểm MF.Chứng minh rằng IK//È và EF=2IK.
c/vẽ AH vuông góc BC tại H .chứng minh rằng tứ giác IKMH là hình thang cân.
d/cho Ik=2HK.tính góc ABC
cho tam giác ABC vuông tại A(AB<AC).Gọi I,M,K lần lượt là trung điểm của AB,BC,AC.
a/chứng minh rằng tứ giác AIMK là hcn
b/trên tia MI lấy E sao cho I là trung điểm ME,trên tia MK lấy F sao cho K là trung điểm MF.Chứng minh rằng IK//È và EF=2IK.
c/vẽ AH vuông góc BC tại H .chứng minh rằng tứ giác IKMH là hình thang cân.
d/cho IK = 2HK.tính góc ABC
a) tam giác ABC có I là trung điểm AB; M là trung điểm BC nên IM là đường trung bình của tam giác ABC
=> IM// AC; IM=1/2 AC hay IM=AK
Tứ giác AIKM có IM//AK; IM=AK nên tứ giác AIKM là hình bình hành.
lại có Góc A bằng 90 độ, vậy AIKM là hình chữ nhật.
b) tam giác MEF có I là trung điểm của ME, K là trung điểm của MF nên IK là đường trung bình của tam giác MEF
=> IK//EF
IK=1/2EF hayEF=2IK.
c) Tam giác ABC có I là trung điểm của AB
K là trung điểm của AC
=> Ik là đường trung bình của tam giác ABC
=> IK//BC=> IK//HM, hay IKMH là hình thang.
Vì AIMK là hình chữ nhật(cmt)
nên AI//KM => góc AIK=MKI(so le trong)
ta có IK//BC(cmt) => Góc AIK=IBC(đồng vị)
từ hai điều này suy ra Góc IBH=MKI.(1)
Tam giác AHB vuông tại H, có HI là trung tuyến
=> IH=IB => Góc IBH=IHB. mà Góc IHB=HIK
=> Góc IBH = HIK(2)
Từ (1) và (2) suy ra Góc HIK=MKI
HÌnh thang IKMH có 2 góc kề đáy HIK=MKI bằng nhau, nên IKMH là hình thang cân.
d) Ta có Góc HIK=MKI(cmt)
mà góc MKI=AIK(so le trong)
nên góc AIK=HIK
Xét tam giác AIK và HIK có
AI=IH(cmt)
AIK=HIK(cmt)
IK cạnh chung
=> hai tam giác bằng nhau theo trương hợp(c.g.c)
=>HK=AK
=> IK=2HK=2AK
mà IK=1/2BC(cmt); AK=1/2AC, nên ta có:
1/2BC=2.1/2AC
=> AC=1/2BC.
Tam giác ABC vuông tại A, có AC=1/2BC nên tam giác ABC là nửa tam giác đều
=> Góc ACB=60độ=> Góc ABC=30 độ
câu này mình không chắc lắm, theo mình nghĩ thì khi cho IK=2HK thì đây là điều kiện mới, không theo cái cũ nữa
chứ nếu theo cũ thì chắc góc ABC k thể bằng 30 đc.
Cho tam giác ABC vuông tại C biết góc B= 2 lần góc A.
a) Tính góc A và góc B.
b) Trên tia đối của tia CB lấy điểm D sao cho CD=CB. Chứng minh AD=AB. Trên AD lấy điểm M, trên AB lấy điểm N sao cho AM=AN. Chứng minh CM=CN.
c) Gọi I là giao điểm của AC và MN. Chứng minh IM=IN.
d) Chứng minh MN//BD.
Vẽ hình giúp mk lun nhé! Thanks
a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)
^A + 2^A= 90°
3^A = 90°
^A = 30°
^B= 90° - 30°= 60°
b)Xét ΔACB và ΔACD có
AC là cạnh chung
^ACB= ^ACD (=90°)
CD= CB (gt)
Vậy ΔACB = ΔACD
=> AD= AB
Xét ΔANC và ΔAMC có
AN= AM (gt)
^NAC=^MAC ( ΔACB = ΔACD )
AC là cạnh chung
Vậy ΔANC = ΔAMC
=> CN= CM
c) Xét ΔNCI và ΔMCI có
CN=CM (cmt)
^NCI=^MCI ( ΔANC = ΔAMC)
CI là cạnh chung
Vậy ΔNCI = ΔMCI
=> IN= IM
a) cho tam giác ABC cân tại A. Trên tia đối của tia AB lây điểm M, trên tia đối của tia AC lấy điểm N sao cho AM=AN. chứng minh rằng tứ giác MNBC là hình thang cân.
b) cho tứ giác ABCD có AD=AB=BC và gócA+gócC=180 độ. chứng minh rằng:
-DB là phân giác góc D
-ABCD là hình thang cân
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC
Cho tam giác ABCD có góc BAC=60độ. kẻ tia Ax song song BC .trên Ax lấy D sao cho AD=DC .
a tính góc BAD và DAC
b chứng minh tứ giác ABCDlà hình thang cân
c gọi E là trung điểm BC . chứng minh tứ giác ADEB là hình thoi
mik cần gấp mn giúp mik vs
Xin mọi người giúp dùm bài toán ạ.
Cho tam giác ABC có 3 góc nhọn (AB<AC ) , đường cao AH. gọi D,E,F lần lượt là trung điểm của các cạnh AB,AC,BC.
a) Chứng minh rằng tứ giác AEFD là hình bình hành. ( mình đã chứng minh được rồi ạ)
b) AF cắt DE tại I. Gọi J là trung điểm của FC. Chứng minh IJ = HE = \(\frac{AC}{2}\)
rồi suy ra thứ giác HIEJ là hình thang cân.
c) Trên tia đối của tia CB lấy điểm O sao cho CO= CF; DO cắt AC tại K. Tính tỉ số AK/CK
Xin cảm ơn ạ.
Cho hình thang cân ABCD (AD // BC). Gọi M,N lần lượt là trung điểm của BC, AD. Trên tia đối của tia AB lấy điểm P, PN cắt BD tại Q và BC tại K. Chứng minh NQ.KP = NP.KQ.