Cho hình thang cân ABCD (AB//CD; AB<CD), AC cắt BD tại O; AD cắt BC tại I. Gọi MN là trung điểm của AB, CD
a) Chứng minh OA = OB; OC = OD
b) Chứng minh 3 điểm I, M, O, N thẳng hàng.
Các bạn ơi, giúp mk với!!!!!!!~~ Các bạn chú trọng vào câu b nhé, câu b phải lí luận chặt chẽ đấy!!!!
~~ Mk cảm ơn trc ạ!!!
Cho tam giác ABC ( AC>AB) đường cao AH. Gọi BE không theo thứ tự là trung điểm của AB, AC, BC. Chứng minh rằng BE là đường trung trực của KH , DEKH là hình thang cân
Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.
Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.
a) Chứng minh tam giác OMN và OPQ cân tại O.
b) Chứng minh tứ giác MNPQ là hình thang cân.
c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.
Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Cho tam giác ABC cân tại A. M là trung điểm của BC. Trên tia AM lấy N, BN cắt AC tại D, CN cắt AB tại E. Chứng minh tứ giác BEDC lài hình thang cân
Cho hình thang cân ABCD (AB//CD) và AB<CD, có BC=15cm, đường cao BH=12cm, DH=16cm.
a) Tính HC
b) Chứng minh DB vuông góc với BC
c) tính diện tích hình thang ABCD
Cho tam giác ABC, gọi G,H lần lượt là trung điểm của các cạnh AB,AC.
a, Tứ giác BGHC là hình gì?Vì sao?
b, Cho biết BC=9cm.Tính GH=?
Mọi người lm ơn hãy giúp mk, mk cần gấp lắm
Cho hình thang ABCD ()0AD 90==; CD = 2AB = 2AD.a)Tính số đo góc BCD, góc ABCcủa hình thang ABCD.b)Chứng minh BD vuông góc với BC.c)LấyKlà điểm tùy ý trên AB. KẻKx vuông góc với DK; Kxcắt BC tại H.Chứng minh DKHvuông cân.
Bài 1: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 2: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 3: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.
Bài 1: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Tính độ dài BH.
Bài 2: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.
a) Chứng minh rằng BD vuông góc với BC.
b) Tính chu vi hình thang.
Bài 3: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.
a) Chứng minh rằng ΔOAB cân.
b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.
c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.