Bài 3: Hình thang cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chanhh

Bài 1: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.

a) Chứng minh rằng CH=DK.

b) Tính độ dài BH.

Bài 2: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.

a) Chứng minh rằng BD vuông góc với BC.

b) Tính chu vi hình thang.

Bài 3: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.

a) Chứng minh rằng ΔOAB cân.

b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.

c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.

Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 19:33

Bài 3: 

a: Ta có: \(\widehat{OAB}=\widehat{ODC}\)

\(\widehat{OBA}=\widehat{OCD}\)

mà \(\widehat{ODC}=\widehat{OCD}\)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)

nên ΔOAB cân tại O


Các câu hỏi tương tự
Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
ngọc hân
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Đức Duy Trần
Xem chi tiết