Chứng minh rằng đa thức f(x) = x^2018 + x^2014 + 1 chia hết cho x^2 + x +1
Chứng minh rằng: \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\) chia hết cho đa thức \(g\left(x\right)=x^2-x\)
Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))
Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.
Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)
Thay x=1 vào \(f\left(x\right)\): \(f\left(1\right)=1^{2018}+1^{2018}-2=0\)
\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)
\(\Rightarrowđpcm\)
\(g\left(x\right)=x^2-x\)
g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)
Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)
+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)
+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)
Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)
Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)
Bài 1: cho f(x) là đa thức với hệ số hữu tỉ. chứng minh rằng:
a, nếu f(x3) chia hết cho x-1 thì f(x3) chia hết cho x2 + x+1
b. chứng minh tổng quát nếu f(xn) chia hết cho x-1 thì f(xn) chia hết cho xn-1 + xn-2 +...+ x+1
Bài 2 chứng minh rằng xn -1 chia hết cho xm-1 khi và chỉ khi n chia hết cho m
Chứng minh rằng f(x)=(x^2+x-1)^2018+(X^2-X+1)-2 chia hết cho g(x)=X^2-x
1. Chứng minh đa thức f(x)=(x^2+x-1)^10+(x^2-x+1)^10-2 chia hết cho x^2-2
2. Chứng minh đa thức f(x)=x^12-x^9+x^4-x+1 không có nghiệm
3. Tìm a để đa thức f(x)=2x^2+7x+6 chia hết cho đa thức g(x)=x+a
4. Với giá trị nào của m thì đa thức f(x)=x^3+x^2-2x+1+m chia hết cho g(x)=2x+1
5. Tìm a,b,c sao cho f(x)=ax^3+b^2+c chia hết cho đa thức x+1 và f(x)=x^-1 thì dư x+5
Help me pleaseeeeeeeeeeeeeeeee
Chiều mai mình nộp rồi, bạn nào giúp được câu nào thì giúp giúp mình với, làm ơnnnnnnnn
1)Cho đa thức f(x) thỏa mãn điều kiện sau: x. f(x+1) = (x+2). f(x)
Chứng minh rằng đa thức f(x) có ít nhất 2 nghiệm là 0 và -1.
2)Tìm nghiệm của đa thức sau:
B(x) = x2 - 2x - 2018 - (x2018 +x2 - 2x - 2017)
1) Chứng minh rằng đa thức (x+y)6+(x-y)6 chia hết cho đa thức x2+y2
2) Tìm dư của phép chia đa thức f(x) cho x2-1 với: f(x)=x50x+49+x48+...+x2+x+1
1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)
\(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2
2) gọi dư của phép chia là ax+b
ta có f(1) = a+b =51
f(-1) = -a+b =1
=> b =26 ; a =25
Vậy dư là : 25x + 26
Chứng minh rằng: f(x)=(x2+x-1)2018+(x2-x+1)2018-2 chia hết cho g(x)=x2-x
Chứng minh rằng đa thức P(x)= x^2017+x^2+1 chia hết cho đa thức Q(x)= x^2+x+1
\(P\left(x\right)=x^{2017}+x^2+1\)
\(=\left(x^{2017}-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^{2016}-1\right)+\left(x^2+x+1\right)\)
\(=x\left[\left(x^3\right)^{2016}-1\right]+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)A+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)A+\left(x^2+x+1\right)\)
\(A=\left(x^2+x+1\right)\left[x\left(x-1\right)A+1\right]⋮x^2+x+1\) (đpcm)
chứng minh rằng đa thức P(x)=x^10+x^5+x^3 chia hết cho đa thức Q(x)=x^2+x+1
\(\dfrac{P\left(x\right)}{Q\left(x\right)}=\dfrac{x^{10}+x^5+x^3}{x^2+x+1}\)
\(=\dfrac{x^{10}+x^9+x^8-x^9-x^8-x^7+x^7+x^6+x^5-x^6+x^3}{x^2+x+1}\)
\(=x^8-x^7+x^5-\dfrac{x^3\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}\)
=x^8-x^7+x^5-x^4+x^3