Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Thi Mai Quynh
Xem chi tiết
Hiếu Lê
Xem chi tiết
Tran Le Khanh Linh
18 tháng 8 2020 lúc 20:16

Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)

Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)

Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)

Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1

Vậy minP=\(\frac{3}{2}\)khi x=y=z=1

Khách vãng lai đã xóa
Nguyễn Hà My
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
3 tháng 8 2020 lúc 9:13

\(T=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)

\(=\left(x-2\right)^2+\left(y-1\right)^2+\left(\frac{x}{4}+\frac{1}{x}\right)+\left(\frac{x+y}{9}+\frac{1}{x+y}\right)+\frac{17}{9}\left(x+y\right)+\frac{7x}{9}-5\)

\(\ge0+0+2\sqrt{\frac{x}{4}\cdot\frac{1}{x}}+2\sqrt{\frac{x+y}{9}\cdot\frac{1}{x+y}}+\frac{17\cdot3}{9}+\frac{7\cdot2}{9}-5\)

\(=\frac{35}{9}\)

Đẳng thức xảy ra tại x=2;y=1

Khách vãng lai đã xóa
Nguyễn Linh Chi
3 tháng 8 2020 lúc 9:27

Đặt x = 2t 

đưa bài toán về dạng: 

\(T=4t^2+y^2+\frac{1}{2t}+\frac{1}{2t+y}\ge\left(t^2+t^2+y^2\right)+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)

\(\ge\frac{\left(2t+y\right)^2}{3}+\frac{1}{2t+y}+\left(2t^2+\frac{1}{2t}\right)\)

\(=\left(\frac{\left(2t+y\right)^2}{3}+\frac{9}{2t+y}+\frac{9}{2t+y}\right)+\left(2t^2+\frac{4}{2t}+\frac{4}{2t}\right)-\frac{17}{2t+y}-\frac{7}{2t}\)

\(\ge3.3+3.2-\frac{17}{3}-\frac{7}{2}=\frac{35}{6}\)

Dấu "=" xảy ra <=> y = t = 1 <=> y = 1 ; x = 2

Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 8 2020 lúc 9:29

Dòng 2 là \(\frac{7x}{4}\)

Khách vãng lai đã xóa
Dũng Lương Trí
Xem chi tiết
Độc Cô Dạ
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2020 lúc 7:55

\(A=3\left(\frac{\sqrt{x-3}-\sqrt{x}+\sqrt{x-3}+\sqrt{x}}{\left(\sqrt{x-3}+\sqrt{x}\right)\left(\sqrt{x-3}-\sqrt{x}\right)}\right)+\frac{x\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=3\left(\frac{2\sqrt{x-3}}{-3}\right)+x=x-2\sqrt{x-3}\)

\(A=x-3-2\sqrt{x-3}+1+2=\left(\sqrt{x-3}-1\right)^2+2\ge2\)

\(A_{min}=2\) khi \(\sqrt{x-3}=1\Leftrightarrow x=4\)

__HeNry__
Xem chi tiết
Akai Haruma
1 tháng 9 2019 lúc 9:03

Cách khác:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{x^4}{x+xy}+\frac{y^4}{y+yz}+\frac{z^4}{z+zx}\geq \frac{(x^2+y^2+z^2)^2}{x+y+z+xy+yz+xz}\)

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2+z^2\geq xy+yz+xz(1)\)

\(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)

\(\Rightarrow 3(x^2+y^2+z^2)\geq (x+y+z)^2\)

\(\Rightarrow (x+y+z)^2\leq 3(x^2+y^2+z^2)\leq (xy+yz+xz)(x^2+y^2+z^2)\leq (x^2+y^2+z^2)^2\)

\(\Rightarrow x+y+z\le x^2+y^2+z^2(2)\)

Từ $(1);(2)$ suy ra:

\(P\geq \frac{(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)}=\frac{x^2+y^2+z^2}{2}\geq \frac{xy+yz+xz}{2}\geq \frac{3}{2}\)

Vậy $P_{\min}=\frac{3}{2}$

Akai Haruma
1 tháng 9 2019 lúc 8:58

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{x^3}{y+1}+\frac{y+1}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{x^3}{y+1}.\frac{y+1}{4}.\frac{1}{2}}=\frac{3x}{2}\)

\(\frac{y^3}{z+1}+\frac{z+1}{4}+\frac{1}{2}\geq \frac{3y}{2}\)

\(\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\geq \frac{3z}{2}\)

Cộng theo vế và thu gọn:

\(\Rightarrow P\geq \frac{5}{4}(x+y+z)-\frac{9}{4}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\((x+y+z)^2\geq 3(xy+yz+xz)\geq 9\)

\(\Rightarrow x+y+z\geq 3\)

\(\Rightarrow P\geq \frac{5}{4}(x+y+z)-\frac{9}{4}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)

Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$

Phan Thị Thu Hương
Xem chi tiết
Akai Haruma
19 tháng 10 lúc 16:38

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+4\geq 4x; y^2+1\geq 2y$

$\Rightarrow P=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}$

$\geq 4x+2y+\frac{1}{x}+\frac{1}{x+y}-5$

$=[\frac{x+y}{9}+\frac{1}{x+y}]+[\frac{x}{4}+\frac{1}{x}]+\frac{131}{36}x+\frac{17}{9}y-5$

$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}(x+y)+\frac{7}{4}x-5$

$\geq \frac{2}{3}+1+\frac{17}{9}.3+\frac{7}{4}.2-5=\frac{35}{6}$

Vậy $P_{\min}=\frac{35}{6}$ khi $x=2; y=1$

Hoài Thu Vũ
Xem chi tiết
Akai Haruma
13 tháng 7 2023 lúc 0:01

Lời giải:
1. Áp dụng BĐT Cô-si

$G=\frac{x^2}{x-1}=\frac{(x^2-1)+1}{x-1}=x+1+\frac{1}{x-1}$

$=(x-1)+\frac{1}{x-1}+2$
$\geq 2\sqrt{(x-1).\frac{1}{x-1}}+2=2+2=4$ 

Vậy $G_{\min}=4$. Giá trị này đạt tại $x-1=\frac{1}{x-1}$

$\Leftrightarrow x=0$ hoặc $x=2$

 

Akai Haruma
13 tháng 7 2023 lúc 0:03

2.

Áp dụng BĐT Cô-si:

$H=x+\frac{1}{x}=(\frac{x}{4}+\frac{1}{x})+\frac{3}{4}x$

$\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}+\frac{3}{4}x$
$=1+\frac{3}{4}x\geq 1+\frac{3}{4}.2=\frac{5}{2}$ (do $x\geq 2$)

Vậy $H_{\min}=\frac{5}{2}$. Giá trị này đạt tại $x=2$
 

Akai Haruma
13 tháng 7 2023 lúc 0:05

3.

Áp dụng BĐT Cô-si:

$K=x^2+\frac{1}{x}=(\frac{x^2}{54}+\frac{1}{2x}+\frac{1}{2x})+\frac{53}{54}x^2$

$\geq 3\sqrt[3]{\frac{x^2}{54}.\frac{1}{2x}.\frac{1}{2x}}+\frac{53}{54}x^2$
$=\frac{1}{2}+\frac{53}{54}x^2\geq \frac{1}{2}+\frac{53}{54}.3^2=\frac{28}{3}$ (do $x\geq 3$)

Vậy $K_{\min}=\frac{28}{3}$ khi $x=3$