Giải pt
\(\left(x-2\right)^4+\left(x-6\right)^4=82\)
giải pt
\(a,\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
\(b,\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\)
\(c,\left(x+1\right)^4+\left(x-1\right)^4=82\)
d,\(\left(4-x\right)^5+\left(x+2\right)^5=32\)
a/ Đặt (x^2 - 5x) = a thì ta có
a^2 + 10a + 24 = 0
<=> (a + 4)(a + 6) = 0
Làm nốt
b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680
<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680
<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680
Đặt x^2 - 11x + 28 = a thì ta có
a(a + 2) = 1680
<=> (a - 40)(a + 42) = 0
Làm nốt
c/ (x + 1)^4 + (x - 1)^4 = 82
<=> x^4 + 6x^2 - 40 = 0
Đặt x^2 = a
=> a^2 + 6a - 40 = 0
<=> (a - 4)(a + 10) = 0
Giải các phương trình sau: \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
Đặt \(t=x-4\)
\(\Rightarrow\left(t+2\right)^4+\left(t-2\right)^4=82\)
\(\Leftrightarrow t^4+24t^2-25=0\Rightarrow\left[{}\begin{matrix}t^2=1\\t^2=-25\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left(x-4\right)^2=1\Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Thật ra đặt cũng được, mà mình lười quá thì đành phanh toạch hết ra đi:vv
Ta có: \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
\(\Leftrightarrow x^4-8x^3+24x^2-32x+16+x^4-24x^3+216x^2-864x+1296-82=0\)
<=> \(2x^4-32x^3+240x^2-896x+1230=0\)
<=> \(2\left(x-5\right)\left(x-3\right)\left(x^2-8x+41\right)=0\)
Vì \(x^2-8x+41\ne0\)
=> \(\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
Vậy tập nghiệm của pt là: S={3;5}
giải pt bậc 4: (phương trình tích)
\(\left(x+6\right)^4+\left(x+4\right)^4=82\)
\(\left(x+4\right)^4+\left(x+6\right)^4=82\)
Đặt a = x + 5
Ta có:
\(\left(x+4\right)^4+\left(x+6\right)^4=82\)
\(\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4\)
\(\Leftrightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=82\)
\(\Leftrightarrow\left(a^2-2a+1\right)^2+\left(a+2a+1\right)^2=82\)
\(\Leftrightarrow\left(a^2+1\right)^2-4a\left(a^2+1\right)+4a^2+\left(a^2+1\right)^2+4a\left(a^2+a\right)+4a^2=82\) \(\Leftrightarrow\left(a^2+1\right)^2+4a^2=41\)
\(\Leftrightarrow a^4+6a^2+1=41\)
\(\Leftrightarrow a^4+6a^2-40a=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a^2=-10\left(loại\right)\\a^2=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-7\end{matrix}\right.\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}x^4+y^4=34\\x+y=2\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\left(x-1\right)\left(y^2+6\right)=y\left(x^2+1\right)\\\left(y-1\right)\left(x^2+6\right)=x\left(y^2+1\right)\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}x^4+y^4=34\\y=2-x\end{matrix}\right.\)
\(\Rightarrow x^4+\left(x-2\right)^4=34\)
Đặt \(x-1=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=34\)
\(\Leftrightarrow t^4+6t^2-16=0\Rightarrow\left[{}\begin{matrix}t^2=2\\t^2=-8\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{2}\Rightarrow x=\sqrt{2}+1\Rightarrow y=1-\sqrt{2}\\t=-\sqrt{2}\Rightarrow x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy^2-x^2y+6x-y^2-y-6=0\\x^2y-xy^2+6y-x^2-x-6=0\end{matrix}\right.\) (1)
Lần lượt cộng 2 vế và trừ 2 vế ta được:
\(\left\{{}\begin{matrix}-x^2-y^2+5x+5y-12=0\\2xy\left(y-x\right)+7\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-5\left(x+y\right)+12=0\\\left(y-x\right)\left(2xy-x-y-7\right)=0\end{matrix}\right.\)
Th1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)
\(\Rightarrow2x^2-10x+12=0\Rightarrow...\)
TH2: \(\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\\left(x+y\right)^2-2xy-5\left(x+y\right)+12=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2v-u-7=0\\u^2-2v-5u+12=0\end{matrix}\right.\)
\(\Rightarrow u^2-6u+5=0\)
\(\Leftrightarrow...\)
giải pt \(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)=3x^2\)
Lần sau đừng tự tiện xếp vào phần bất pt bạn nhé :(
Ta có : \(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)=3x^2\)
\(\Leftrightarrow4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)=3x^2\)
\(\Leftrightarrow4\left(x^2+17x+60\right)\left(x^2+16x+60\right)=3x^2\)(1)
Đặt \(x^2+16x+60=a\)
Pt (1) \(\Leftrightarrow4\left(a+x\right)a=3x^2\)
\(\Leftrightarrow4\left(a^2+ax\right)=3x^2\)
\(\Leftrightarrow4a^2+4ax=3x^2\)
\(\Leftrightarrow4a^2+4ax+x^2=4x^2\)
\(\Leftrightarrow\left(2a+x\right)^2=4x^2\)
\(\Leftrightarrow\orbr{\begin{cases}2a+x=2x\\2a+x=-2x\end{cases}}\)
*Nếu \(2a+x=2x\)
\(\Leftrightarrow2a=x\)
\(\Leftrightarrow x^2+16x+60=x\)
\(\Leftrightarrow x^2+15x+60=0\)
\(\Leftrightarrow x^2+2.\frac{15}{2}.x+\frac{225}{4}+\frac{15}{4}=0\)
\(\Leftrightarrow\left(x+\frac{15}{2}\right)^2+\frac{15}{4}=0\)
Pt vô nghiệm
*Nếu \(2a+x=-2x\)
\(\Leftrightarrow2a+3x=0\)
\(\Leftrightarrow2\left(x^2-16x+60\right)+3x=0\)
\(\Leftrightarrow2x^2-32x+120+3x=0\)
\(\Leftrightarrow2x^2-29x+120=0\)
\(\Leftrightarrow x^2-\frac{29}{2}x+60=0\)
\(\Leftrightarrow x^2-2.\frac{29}{4}.x+\frac{841}{16}+\frac{119}{16}=0\)
\(\Leftrightarrow\left(x-\frac{29}{4}\right)^2+\frac{119}{16}=0\)
Pt vô nghiệm
Vậy pt vô nghiệm
Giải phương trình \(^{\left(x-2\right)^4+\left(x-6\right)^4=82}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
1, Giải pt
\(x^4-8x^3+21x^2-24x+9=0\)
2, Giải pt
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
Giải giúp mk vs ạ. Cảm ơn m.n nhìu
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
giải hệ pt :
\(\left\{{}\begin{matrix}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=1\\27x^6=x^3-8y+2\end{matrix}\right.\)