Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tràn thị trúc oanh
Xem chi tiết
Phạm Thị Cẩm Huyền
25 tháng 10 2017 lúc 21:01

Dễ mà nhân ra ik r` bt

Ly Hương
Xem chi tiết
Vannie.....
12 tháng 4 2022 lúc 20:11

a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)

\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)

\(=x^2-9x+14\)

\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)

\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)

\(=x^6+2x^2+3\)

b) Đa thức M(x) có hệ số cao nhất là 1 

                                hệ số tự do là 14

                                bậc 2

 Đa thức N(x) có hệ số cao nhất là 1 

                            hệ số tự do là 3 

                            bậc 6

Kim Jeese
Xem chi tiết
Tryechun🥶
11 tháng 3 2022 lúc 10:33

\(a.=15x^3y^5z^7\) có hệ số là 15 ; phần biến là:x3y5z7 ; bậc là:15

Tryechun🥶
11 tháng 3 2022 lúc 10:35

b.\(=3x^4y^3z^8\)có hệ số là: 3 ;phần biến là: x4y3z;có bậc là:15

Thanh Hoàng Thanh
11 tháng 3 2022 lúc 10:36

undefined

Nguyễn Thị Thanh Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 22:12

\(\left(x-3x\right)^3=\left(-2x\right)^3=-8x^3\)

Hệ số của hạng tử bậc là 3 là -8

lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 6:44

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

Khách vãng lai đã xóa
Trần Thị Hà Giang
Xem chi tiết
Pham Van Hung
28 tháng 10 2018 lúc 9:01

 \(A=\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)-18\)

\(=\frac{1}{4}\left[\left(2x+1\right)\left(x+1\right)^2.4\left(2x+3\right)\right]-72\)

\(=\frac{1}{4}\left[\left(2x+1\right)\left(2x+3\right)\left(2x+2\right)^2\right]-72\)

\(=\frac{1}{4}\left[\left(4x^2+8x+3\right)\left(4x^2+8x+4\right)-72\right]\)

Đặt: \(4x^2+8x+3=t\)

Ta có:  \(A=\frac{1}{4}\left[t^2+t-72\right]\)

\(=\frac{1}{4}\left[\left(t+9\right)\left(t-8\right)\right]\)

\(=\frac{1}{4}\left[\left(4x^2+8x+12\right)\left(4x^2+8x-5\right)\right]\)

\(=\left(x^2+2x+3\right)\left[4x^2+8x-5\right]\)

\(=\left(x^2+2x+3\right)\left(2x-1\right)\left(2x+5\right)\)

 \(B=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x+2=a\)

Khi đó: \(B=a\left(a-3\right)-4\)

\(=a^2-3a-4=\left(a+1\right)\left(a-4\right)\)

\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)

        \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)

\(=x^4-2x^3+6x^2-8x+8\)

\(=x^4-2x^3+2x^2+4x^2-8x+8\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)

       \(3x^4-5x^3-18x^2-3x+5\)

\(=3x^4+x^3-x^2-6x^3-2x^2+2x-15x^2-5x+5\)

\(=x^2\left(3x^2+x-1\right)-2x\left(3x^2+x-1\right)-5\left(3x^2+x-1\right)\)

\(=\left(3x^2+x-1\right)\left(x^2-2x-5\right)\)

Bài này thật sự khó và hay đấy.

Mộc Miên
Xem chi tiết
Thiện Nguyễn
25 tháng 3 2020 lúc 9:56
https://i.imgur.com/NOxfqjV.jpg
Khách vãng lai đã xóa
Thiện Nguyễn
25 tháng 3 2020 lúc 9:54
https://i.imgur.com/awOKwJi.jpg
Khách vãng lai đã xóa
Thiện Nguyễn
25 tháng 3 2020 lúc 9:55
https://i.imgur.com/a0ApmAE.jpg
Khách vãng lai đã xóa
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 6:31

a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)

Khai triển \(\left(2-3x^2+x^3\right)^5\)

\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)

Hệ số của số hạng chứa \(x^9\):

\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)

b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)

Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_5^4+C_5^3+...+C_{22}^3\)

\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)

Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)

Khách vãng lai đã xóa
Trần Thiên Thanh
Xem chi tiết
Nguyển Thị Hà Anh
5 tháng 4 2018 lúc 10:01

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)