Cho a+b+c=2p
CMR : 2bc \(+b^2+c^2-a^2=4p\left(p-a\right)\)
Cho \(a+b+c=2p\). Chứng minh rằng:
\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c+a\right)\cdot\left(b+c-a\right)\)
\(=2p\cdot\left(2p-a-a\right)\)
\(=4p\left(p-a\right)\)
Cho a+b+c=2p
CMR: 2ab+\(b^2+c^2-a^2=4p\)(p-a)
Giups mk vs ạ ai nhanh mk sẽ vote nha
Cho a + b + c = 2p. C/minh đẳng thức: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Gọi \(2bc+b^2 +c^2-a^2=VT\)
và \(4p\left(p-a\right)=VP\)
Biến đổi VP ta có :
\(4p\left(p-a\right)=2p\left(2p-2a\right)\)
\(=\left(a+b+c\right)\left(b-c-a\right)\)
\(=2bc+b^2+c^2-a^2=VT\) (đpcm)
Vậy ......
Cho a + b + c = 2p. C/minh đẳng thức: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Ta có: \(a+b+c=2p\)
\(\Rightarrow b+c=2p-a\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)
\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)
\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)
Vậy....
Ta có :
VT = \(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c-a\right)\left(b+c+a\right)\)
\(=\left(b+c+a-2a\right).2p\)
\(=\left(2p-2a\right).2p\)
\(=4p\left(p-a\right)=VP\)
\(\left(đpcm\right)\)
Cho a+b+c = 2p . Chứng minh rằng đẳng thức : \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=2p\left(a+b+c-2a\right)\)
\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)
biến đổi vế phải ta được:
4p(p -a ) = 4p\(^2\)-4pa
=(2p)\(^2\)-2p.2a
=(a+b+c)\(^2\)-2a(a+b+c)
=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)
=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)
cho a+b+c=2p. cmr :\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Xét \(VP=4p.\left(p-a\right)=2p.2.\left(p-a\right)=2p.\left(2p-2a\right)=\left(a+b+c\right)\left(b+c-a\right)\)
\(ab+ac-a^2+b^2+bc-ab+bc+c^2-ac=2bc+b^2+c^2-a^2=VT\)
Vậy ta có đpcm
2bc+b^2+c^2-a^2=(b+c)^2-a^2=(b+c-a)(b+c+a)=(2p-a-a)2p=(2p-2a)2p=2.2p(p-a)=4p(p-a)
1) Cho \(a+b+c=2p\), Chúng minh hằng đẳng thức
\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
2) Cho biểu thức
\(M=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)
Tính M theo a,b,c biết rằng \(x=\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c\)
HELP ME!!!!!!!!!! NHANH NHANH GIÙM MK NHA
CMR: \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\) với \(a+b+c=2p\)
Vế phải = (b + c)2 - a2 = (b + c - a). (b +c + a) = (2p -a - a).2p = 2.(p -a).2p = 4p. (p- a) = Vế trái
vậy...
1.Cho biểu thức M=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+\(x^2\)
Tính M theo a,b,c biết rằng \(x=\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}c\)
2.Cho a+b+c=2p.Cm
\(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Bài 2 :
Ta có : \(4p(p-a)\)\(=2\left(a+b+c\right)\left(\dfrac{a+b+c}{2}-a\right)\)
=\(2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\left(dpcm\right)\)
Vậy :
Bai 2:
Ta có:
\(VP=4p\left(p-a\right)=2p.2p-2a.2p\) (1)
Thay \(a+b+c=2p\) vào (1) ta có:
\(\left(a+b+c\right)^2-2a.\left(a+b+c\right)\)
\(=a^2+b^2+c^2+2ab+2ac+2bc-2a^2-2ab-2ac\)
\(=-a^2+b^2+c^2+2bc=VT\)
Vậy \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Chúc bạn học tốt!!!
Giải giùm bài 1 đi cháu Trần Nguyễn Bảo Quyên