Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Nguyễn Ánh
Xem chi tiết
Nguyễn Châm Anh
29 tháng 9 2017 lúc 16:09

Ta có AB^2+AC^2=10^2+24^2=676

      BC^2=26^2=676

=> Tam Giác ABC vuông tại A(đpcm)

b, \(\sin B=\frac{AC}{BC}=\frac{24}{26}=\frac{12}{13}\)

\(\sin C=\frac{AB}{BC}=\frac{10}{26}=\frac{5}{13}\)

c,Áp dụng hệ thức   AB.AC=AH.BC

           => AH=AB.AC/BC=10.24/26=9,2

\(AB^2=BH.BC\)\(\Leftrightarrow10^2=BH.26\)\(\Rightarrow BH\approx3,8\)

\(\Rightarrow CH=22,2\)


B A C H

Ngọc Nguyễn Ánh
30 tháng 9 2017 lúc 13:21

- cảm ơn ạ 

Lê Kiều Chinh
Xem chi tiết
PTTD
Xem chi tiết
Họ Và Tên
27 tháng 8 2021 lúc 8:20

a,theo định lý pytago đảo tính dc A=90

các góc còn lại tính bằng máy tính nha bạn.bạn lấy máy tính bấm \(sin^{-1}\)(cạnh đối/cạnh huyền) là ra góc cần tính nha bạn

b,ah vuông góc bc mà tam giác abc vuông tại a nên

   \(AB^2=BH.BC\Rightarrow100=BH.26\Rightarrow BH=\dfrac{50}{13}\)

   \(\Rightarrow CH=BC-BH=\dfrac{288}{13}\)

\(\Rightarrow AH^2=BH.CH=\dfrac{14400}{169}\Rightarrow AH=\dfrac{120}{13}\)

tick mik nha bn

Nguyễn Hằng
Xem chi tiết
ha xuan duong
23 tháng 3 2023 lúc 21:28

.

 

ha xuan duong
23 tháng 3 2023 lúc 21:47

a,
xét tam giác BAC và tam giác BHA có
góc B chung
góc BAC=góc BHA (=90 độ)
=>tam giác BAC đông dạng với tam giác BHA
ta có \(\dfrac{AB}{BH}=\dfrac{BC}{BA}\)=>\(AB^2=BH.BC\)
b,
Xét Tam giác ABC 
=>\(\dfrac{AB}{AH}=\dfrac{BC}{AC}\)=>AB.AC=AH.BC
c,
áp dụng định lý py-ta-go vào tam giác ABC vuông tại A
\(AC^2=BC^2-BA^2\)
=>AC=8
Xét tam giác ABC 
\(\dfrac{AC}{CH}=\dfrac{AB}{BH}=>\dfrac{8}{CH}=\dfrac{6}{10-CH}\)
=>8(10-CH)=6CH
=>80-8CH=6CH
=>CH sấp sỉ 5cm
áp dụng định lý py-ta-go vào tam giác HBA vuuong tại H
\(AH^2=AB^2-BH^2\)
=>AH=3,31662479

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2018 lúc 10:47

Áp dụng định lý Pytago trong tam giác ABH vuông tại H. Ta có:

Trong tam giác vuông ABC vuông tại A có AH là đường cao

Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:

Vậy AC = 7,5 (cm); BC =  12,5 (cm)

Đáp án cần chọn là: B

mary
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 18:49

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

b: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra AE*AB=AF*AC

=>AE/AC=AF/AB

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

AE/AC=AF/AB

Do đó: ΔAEF đồng dạng với ΔACB

c: Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)

ΔBAD vuông tại A có

\(cotABD=\dfrac{AB}{AD}\)(2)

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)

nongvietthinh
Xem chi tiết
Trương Phúc Uyên Phương
28 tháng 7 2015 lúc 11:32

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

Cao Linh Chi
13 tháng 2 2016 lúc 11:14

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

ko ten ko tuoi
5 tháng 3 2016 lúc 21:08

viet ba dao nhu the co ma lam dc!!! 

Bùi Hải Hà
Xem chi tiết
Hân Trần
Xem chi tiết
Lương Đại
31 tháng 3 2022 lúc 21:32

a, Xét ΔHBA và ΔABC có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

\(\Rightarrow AB.AC=BC.AH\)

b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)

\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)