Tìm giá trị của m để phương trình ẩn x 2mx-1/x-1=m-2 có nghiệm duy nhất
1. Tìm giá trị của m để phương trình ẩn x:
2mx-1/x-1=m-2 có nghiệm duy nhất
2. Giải phương trình:
2x/(2x^2-5x+3)+9x/(2x^2-x+3)=6
1, 2mx−1x−1=m−2 (x≠1)(x≠1)
⇔ 2mx−1=(m−2)(x−1)
⇔ 2mx−1=x(m−2)−m+2
⇔ x.(m+2)=−m+3x.(m+2)=−m+3
Nếu m+2=0m+2=0 hay m=−2m=−2 thì 0x=5
⇒ PT vô nghiệm
Nếu m+2≠0 hay m≠−2 thì x=3mm+2
2, 2x2x²−5x+3+9x2x²−x−3=6
⇔ 2x(3x−2).(x−1)+9x(3x−2).(x+1)=6
⇔ 2x(x+1)(3x−2).(x−1)(x+1)+9x(x−1)(3x−2).(x+1)(x−1)=6
⇒ 2x(x+1)+9x(x−1)=6(3x−2)(x+1)(x−1)
⇔ 11x²−7x=18x³−12x²−18x+12
⇔ 18x³−13x²−11x+12=0
4) Tìm a thuộc Z để phương trình sau có nghiệm duy nhất là số nguyên
a^2x+2x=3(a+1-ax)
5) Tìm m để phương trình: (m^2+5)x=2-2mx
có nghiệm duy nhất đạt giá trị lớn nhất
6) Tìm tất cả các số thực a không âm sao cho phương trình: (a^2-4)x=a^2-ma+16 (ẩn x)
có nghiệm duy nhất là số nguyên
Tìm giá trị của m để hệ phương trình x + y = 2 m x − y = m có nghiệm nguyên duy nhất.
A. m = −1
B. m = 0; m = 1
C. m = 0; m = −2
D. m = −2; m = 1
Ta có x + y = 2 m x − y = m ⇒ x + mx = 2 + m ⇒ x(m + 1) = m + 2
Nếu m = −1 ⇒ 0.x = 1 (vô lí)
Nếu m ≠ 1 ⇒ x = m + 2 m + 1 = 1 + 1 m + 1
Để hệ phương trình đã cho có nghiệm nguyên duy nhất ⇒ x nguyên
⇒ m + 1 = ± 1 ⇒ m = 0; m = −2
Với m = 0 ⇒ x = 2 y = 0 (thỏa mãn)
Với m = −2 ⇒ x = 0 y = 2 (thỏa mãn)
Đáp án: C
Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
a) Giải phương trình đã cho khi m = 3.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.
a, Thay m=3 vào pt ta có:
\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)
b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
cho phương trình ẩn x: \(x^2=2mx+2m+8\)(1)
a. giải pt đã cho khi m=4
b. Chứng minh PT luôn có 1 nghiệm phân biệt vs mọi m
c. tìm giá trị của m để phương trình (1) có hai nghiệm x1,x2 sao cho x1+ 2x2=2
cho phương trình x2+ 2mx -2m-6=0 (1), (với ẩn x, tham số m ). xác định giá trị của m để phương trình (1) có hai nghiệm x1,x2 sao cho x12 +x22 nhỏ nhất.
\(\Delta'=m^2+2m+6=\left(m+1\right)^2+5>0\) ;\(\forall m\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-2m-6\end{matrix}\right.\)
Đặt \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(P=\left(-2m\right)^2-2\left(-2m-6\right)=4m^2+4m+12\)
\(P=\left(2m+1\right)^2+11\ge11\)
\(P_{min}=11\) khi \(m=-\dfrac{1}{2}\)
Bài 01: Biện luận số nghiệm của phương trình ẩn x sau
a/ (2m-3)x + 3mx - 5m + k - 4 = 0
b/ (m-2)x + 2mx - 3m + k - 3 = 0
c/ k2 (2kx + 1) - k(5k2 - 2x) = 5k -1
Bài 02: Tìm giá trị của k để phương trình sau là phương trình bậc nhất ẩn x
a/ (2x-3)x - k2x2 - x = 4x2 - 5
b/ (3k+7)x + k2x2 +4 = 9x2 - 2x
Tìm m để phương trình 2mx-3=3x+m. (1) a, Tìm m để phương trình (1) nhận x=1/2 làm nghiệm b, Tìm m để phương trình (1) có nghiệm duy nhất, tính nghiệm theo m
a)Bạn chỉ cần bê 1/2 vào tìm m bình thường
b)nx-2+n=3x
\(\Leftrightarrow\left(m-3\right)x+m-2=0\)
Để pt có nghiệm duy nhất thì m-3 khác 0 suy ra m khác 0
Khi đó nghiệm duy nhất là x=-m+2/m-3
cho phương trình \(x^2-2mx+m^2-m+2=0\) với m là tham số và x là ẩn số
a,tìm điều kiện của m để phương trình có 2 nghiệm \(x_1,x_2\)
b,với điều kiện của câu a hãy tìm m để biểu thức A=\(x_1x_2-2x_1-2x_2\) đạt giá trị nhỏ nhất
\(\Delta'=m^2-\left(m^2-m+2\right)=m-2\)
Pt đã cho có 2 nghiệm khi \(\Delta'\ge0\Leftrightarrow m\ge2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+2\end{matrix}\right.\)
\(A=x_1x_2-2\left(x_1+x_2\right)\)
\(A=m^2-m+2-4m\)
\(A=m^2-5m+2=\left(m-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\)
\(A_{min}=-\dfrac{17}{4}\) khi \(m=\dfrac{5}{2}\)