Tính: \(A=\sqrt{0,25.\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
Rút gọn A=\(\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}-\sqrt{5}\)
Rút gọn \(\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
Tính
\(a,F=\sqrt{13-\sqrt{160}}-\sqrt{53-4\sqrt{9}}\)
\(b,A=\sqrt{13-30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(c,D=\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
\(d,M=\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
\(\sqrt{\frac{\sqrt{961}}{4}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
rút gọn biệu thức
\(\sqrt{\frac{\sqrt{961}}{4}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
\(...=\sqrt{\frac{31+8\sqrt{10}+4\sqrt{15}+4\sqrt{6}}{4}}=\frac{\sqrt{\left(2\sqrt{5}\right)^2+\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+8\sqrt{10}+4\sqrt{15}+4\sqrt{6}}}{2}\)
\(=\frac{\sqrt{\left(2\sqrt{5}+2\sqrt{2}+\sqrt{3}\right)^2}}{2}=\frac{2\sqrt{5}+2\sqrt{2}+\sqrt{3}}{2}\)
1 Tính
\(P=\sqrt{1+99999...9^2+0,99999...9^2}\)( n chứ số 9)
\(F=\sqrt{13-\sqrt{160}}-\sqrt{53-4\sqrt{9}}\)
\(H=\sqrt{0.25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
1) Rút gọn
a)A=\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
b)B=\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
c)P=\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
2) Rút gọn
\(\sqrt{0,25\sqrt{961}+2\sqrt{10}+\sqrt{15}+\sqrt{6}}\)
3) So sánh
a)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\) và 0
b)\(\sqrt{2002}+\sqrt{2004}\) và \(2\sqrt{2003}\)
bài 1 Tính giá trị biểu thức:
a)\(\sqrt{1,44}+3\sqrt{1,69}\)
b)\(\sqrt{0,04}+2\sqrt{0,25}\)
bài 2 bài 2 so sánh
a) 2\(\sqrt{31}\) và 10
b) \(\sqrt{15}-1\) và \(\sqrt{10}\)
a) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\\\Rightarrow2\sqrt{31}>10\)
Bài 1:
a) \(\sqrt{1.44}+3\sqrt{1.69}=1.2+3\cdot1.3=1.2+3.9=5.1\)
b) \(\sqrt{0.04}+2\cdot\sqrt{0.25}=0.2+2\cdot0.5=1.2\)
Tính
\(D=\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}.\)
\(B=\sqrt{29+6\sqrt{6}}-\sqrt{32-6\sqrt{15}}\)
\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ
Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc
đề câu B chả sai đi chỗ nào :)) tại tụi m tách sai thôi =))
\(B=\sqrt{29+6\sqrt{6}}-\sqrt{32-6\sqrt{15}}\)
\(B=\sqrt{\left(3\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(3\sqrt{3}-\sqrt{5}\right)^2}\) ( tách ra hằng đẳng thức )
\(B=3\sqrt{3}+\sqrt{2}-3\sqrt{3}+\sqrt{5}\)
\(B=\sqrt{2}+\sqrt{5}\)
nuột không :))