\(\sqrt{2008+\sqrt{2008+\sqrt{2008+...+\sqrt{2008}}}}\)
Trong biểu thức trên, số 2008 xuất hiện 2008 lần. Tính giá trị của biểu thức.
Tính giá trị biểu thức E = \(\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)
Trước tiên ta cần chứng minh : \(1^2+n^2+\dfrac{n^2}{\left(n+1\right)^2}\text{=}\left(n+1-\dfrac{n}{n+1}\right)^2\)
\(\Leftrightarrow2.\left(\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n}{n+1}-\dfrac{n^2}{n+1}\right)\text{=}0\)
\(\Leftrightarrow2.0\text{=}0\left(LĐ\right)\)
Ta có : \(E\text{=}\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)
Với bổ đề trên thì :
\(E\text{=}\sqrt{\left(2007+1-\dfrac{2007}{2008}\right)^2}+\dfrac{2007}{2008}\)
\(E\text{=}2008+\dfrac{2007}{2008}-\dfrac{2007}{2008}\)
\(E\text{=}2008\)
tính giá trị biểu thức (\(\sqrt{2009}\)-\(\sqrt{2008}\))\(x^2\)- (\(\sqrt{2008}\)-\(\sqrt{2007}\))x +6\(\sqrt{2008}\)-2\(\sqrt{2007}\)
với x = \(\frac{2\sqrt{2009}-3\sqrt{2008}+\sqrt{2007}}{\sqrt{2008}-\sqrt{2009}}\)
Cho x,y,z dương thỏa mãn xy+yz+zx=2008. Chứng minh rằng giá trị biểu thức M không phụ thuộc vào x,y,z.
\(M=x\sqrt{\dfrac{\left(2008+y^2\right)\left(2008+z^2\right)}{2008+x^2}}+y\sqrt{\dfrac{\left(2008+z^2\right)\left(2008+x^2\right)}{2008+y^2}}+z\sqrt{\dfrac{\left(2008+x^2\right)\left(2008+y^2\right)}{2008+z^2}}\)
M = x.√[(2008+y²).(2008+z²)\(2008+x²)] + y.√[(2008+x²).(2008+z²)\(2008+y²)] + z.√[(2008+y²).(2008+x²)\(2008+z²)]
ta có:
2008 + x² = xy + xz + yz + x²
2008 + x² = (x+y).(x+z)
tương tự: 2008 + y² = (x+y).(y+z) và 2008 + z² = (z+y).(x+z)
chỉ việc thay vào rùi rút gọn thui
=> M = x.√[(x+y).(y+z).(x+z).(z+y)\ (x+y).(x+z)] + y.√[(x+y).(x+z).(x+z).(z+y)\(y+x).(y+z)] + z.√[(x+y).(x+z).(y+z).(y+x)\(x+z).(z+y)]
=> M = x.|y+z| + y.|z+x| + z.|x+y|
=> M = 2.2008
Thay \(xy+yz+xz=2018\) ta được:
\(\left\{{}\begin{matrix}2018+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\\2018+y^2=y^2+xy+yz+xz=\left(y+z\right)\left(x+y\right)\\2018+z^2=z^2+xy+yz+xz=\left(x+z\right)\left(y+z\right)\end{matrix}\right.\)
Sau đó thay vào lần lượt đề bài là được
tính gtrị của biểu thức bằng máy tính cásio(giải thích rõ hộ mình nha)
\(\sqrt[2011]{2010\sqrt[2010]{2009\sqrt[2009]{2008\sqrt[2008]{2007........\sqrt[2002]{2001\sqrt[2001]{2000}}}}}}\)
Tính giá trị biểu thức A=\(\sqrt{\left(1-\sqrt[]{2007^{ }}\right)}^2.\sqrt{2008+2\sqrt[]{2007}}\)
\(P(x)=ax^2+bx+c, \ a \ne 0\)
Chứng minh rằng \(\forall m \in \mathbb{R}\) ta có :
\(P(m) = P\left( { - m - \dfrac{b}{a}} \right).\)
Từ đó tính giá trị biểu thức \((\sqrt {2009} - \sqrt {2008} )x^2 - (\sqrt 2 008 - \sqrt {2007} )x + 6\sqrt {2008} - 2\sqrt {2007}\)
với \(x = \dfrac{2 \sqrt{2009}- 3\sqrt{2008}+ \sqrt{2007}}{ \sqrt{2008}- \sqrt{2009}}\)
với cả : P(x) = ax2 + bx +c , a khác 0
Tìm Giá Trị lớn nhất và Giá trị nhỏ nhất của biểu thức
A = \(\sqrt{x-2007}+\sqrt{2008-x}\)
Cho \(x=\sqrt[3]{\sqrt{2}-1}-\frac{1}{\sqrt[3]{\sqrt{2}-1}}\). Tính giá trị biểu thức P = x3 + 3x + 2008
x= ...... - ....... = a -b
P=(a-b)^3 + 3(a-b) +2018 = a^3-3a^2b+3ab^2-b^3 +3a-3b+2018
=a^3-b^3 -3a(ab-1) -3b(ab -1) +2018 = a^3-b^3 - 3(ab-1)(a+b) +2018
a.b = 1 => ab-1 =0 => P =a^3 -b^3 +2018=\(\sqrt{2}\)-1 -\(\frac{1}{\sqrt{2}-1}\)+2018
=\(\frac{2+1-2\sqrt{2}-1+2018\sqrt{2}-2018}{\sqrt{2}-1}\)=\(\frac{2016\sqrt{2}-2016}{\sqrt{2}-1}\)=2016
Vậy P=2016
* Cho a, b, c ≥ 0. Chứng minh rằng a+b+c ≥ \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
* Chứng minh rằng A=\(\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)có giá trị là số tự nhiên
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)