Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Duyên
Xem chi tiết

a3+b3+ab=(a+b)3-3ab(a+b)+ab=(a+b)3-ab(3a+3b-1)

=(a+b)3-ab(2a+4b)

=(a+b)3-2ab(a+2b)             (đề bài sai phải không????)

sjbjscb
Xem chi tiết
Phạm Minh Quang
5 tháng 10 2019 lúc 23:26

@Nguyễn Việt Lâm

Phạm Minh Quang
5 tháng 10 2019 lúc 23:27

@Vũ Minh Tuấn

Trần Tuệ Như
Xem chi tiết
Bui Huyen
19 tháng 3 2019 lúc 22:47

Ta có :

\(a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab=1^3-3ab+ab=1-2ab\)

\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)

\(\Rightarrow-ab\ge\frac{-1}{4}\Rightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\)

\(\Rightarrow a^3+b^3+ab\ge\frac{1}{2}\left(đpcm\right)\)

Trần Tuệ Như
19 tháng 3 2019 lúc 22:50

Thanhs.

bui huyen  Cô- si chỉ dùng cho 2 số dương thôi, chắc gì a và b đã dương

Nguyễn Thị Bích Thuỳ
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 21:58

\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)

\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)

\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

Nguyễn Thị Bích Thuỳ
18 tháng 9 2021 lúc 21:46

Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ 

Tuna Ngô
Xem chi tiết
Tuna Ngô
29 tháng 3 2022 lúc 21:46

Lời giải

Bất đẳng thức cần chứng minh được viết lại thành

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 5$

Ta chứng minh bất đẳng thức sau đây

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

Thật vậy, bất đẳng thức trên tương đương với

$latex \displaystyle \frac{{{\left( a-1 \right)}^{2}}\left( 2{{a}^{2}}+6a+3 \right)}{3{{a}^{2}}}\ge 0$

Hiển nhiên đúng với a là số thực dương.

Áp dụng tương tự ta được $latex \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{7}{3}-\frac{2b}{3};\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{7}{3}-\frac{2c}{3}$

Cộng theo vế các bất đẳng thức trên ta được

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 7-\frac{2\left( a+b+c \right)}{3}=5$

Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi $latex a=b=c=1$.

Chúng ta sẽ khởi đầu kỹ thuật này bằng việc đưa ra cách giải thích cho việc tìm ra bất đẳng thức phụ trên và nó cũng chính là cách giải thích cho các bài toán sau này của chúng ta.

Bài toán trên các biến trong cả hai vế và điều kiện đều không ràng buộc nhau điều này khiến ta nghĩ ngay sẽ tách theo từng biến để chứng minh được đơn giản hơn nếu có thể. Nhưng rõ ràng chỉ từng đó thôi là không đủ. Để ý đến dấu đẳng thức xẩy ra nên ta nghĩ đến chứng minh bất đẳng thức sau

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}\Leftrightarrow \frac{\left( a-1 \right)\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}\ge 0$

Tuy nhiên đánh giá trên không hoàn toàn đúng với a thực dương.

Để ý là với cách làm trên ta chưa sử dụng điều kiện .

Như vậy ta sẽ không đi theo đường lối suy nghĩ đơn giản ban đầu nữa mà sẽ đi tìm hệ số để bất đẳng thức sau là đúng

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+ma+n\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$

Trong đó m và n là các hệ số chưa xác định.

Thiết lập tương tự với các biến b và c ta được

$latex \displaystyle \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{5}{3}+mb+n;\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{5}{3}+mc+n$

Cộng theo vế các bất đẳng thức trên ta có

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}}{3}\ge 5+m\left( a+b+c \right)+3n=5+3\left( m+n \right)$

Như vậy ở đây 2 hệ số m và n phải thỏa mãn điều kiện $latex \displaystyle m+n=0\Leftrightarrow n=-m$. Thế vào (1) dẫn đến

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)$

Đến đây ta chỉ cần xác định hệ số duy nhất là m để bất đẳng thức (2) là đúng. Chú ý đẳng thức xẩy ra tại $latex a=b=c=1$ nên ta cần xác định m sao cho

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\Leftrightarrow \left( a-1 \right)\left( \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}-m \right)\ge 0$

Khi cho $latex a=1$ thì ta có $latex \displaystyle \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}=-\frac{2}{3}$ từ đó ta dự đoán rằng $latex \displaystyle m=-\frac{2}{3}$ để tạo thành đại lượng bình phương $latex {{\left( a-1 \right)}^{2}}$ trong biểu thức. Từ đó ta sẽ chứng minh bất đẳng thức phụ

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

bao than đen
Xem chi tiết
Cô Hoàng Huyền
9 tháng 2 2018 lúc 10:01

Ta có a + b = 1 nên  \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)

Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)

\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

pham trung thanh
9 tháng 2 2018 lúc 10:03

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)

\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

_little rays of sunshine...
Xem chi tiết
Duong Thi Minh
Xem chi tiết
alibaba nguyễn
11 tháng 4 2017 lúc 9:38

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)

Cộng vế theo vế ta được

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)

\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

alibaba nguyễn
10 tháng 4 2017 lúc 22:11

Mai mình làm cho

Duong Thi Minh
10 tháng 4 2017 lúc 22:17

ukm mơn alibaba nguyễn nhìu

Harry James Potter
Xem chi tiết