Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thai Phạm
Xem chi tiết
zZz Cool Kid_new zZz
2 tháng 8 2020 lúc 15:38

Tham khảo câu trả lời tại đây bạn nhé !

https://olm.vn/hoi-dap/detail/224113518607.html

Câu hỏi của An Van - Toán lớp 10 - Học toán với OnlineMath

Chúc bạn học tốt ^_^

Khách vãng lai đã xóa
FL.Han_
2 tháng 8 2020 lúc 16:18

Bài làm:

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n\)

\(=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1)(n+2) là tích 3 STN liên tiếp 

=> n(n+1)(n+2) chia hết cho 3, mà 3n chia hết cho 3

=> đpcm

Khách vãng lai đã xóa
Slendrina
Xem chi tiết
T.Thùy Ninh
14 tháng 6 2017 lúc 20:15

\(a,n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)

Ngọc Thiện Hồ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:25

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) 3

Ta phải chứng minh rằng Sk+1 3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

= k3 + 3k2 + 5k + 3k2 + 9k + 9

hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk 3, mặt khác 3(k2 + 3k + 3) 3 nên Sk+1 3.

Vậy (n3 + 3n2 + 5n) 3 với mọi n ε N* .

b) Đặt Sn = 4n + 15n - 1

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1 9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)

Theo giả thiết quy nạp thì Sk 9 nên 4S1 9, mặt khác 9(5k - 2) 9, nên Sk+1 9

Vậy (4n + 15n - 1) 9 với mọi n ε N*

c) Đặt Sn = n3 + 11n

Với n = 1, ta có S1 = 13 + 11n = 12 nên S1 6

Giả sử với n = k ≥ 1 ,ta có Sk = k3 + 11k 6

Ta phải chứng minh Sk+1 6

Thật vậy, ta có Sk+1 = (k + 1)3 + 11(k + 1) = k3 + 3k + 3k + 1 + 11k + 11

= ( k3 + 11k) + 3(k2 + k + 4) = Sk + 3(k2 + k + 4)

THeo giả thiết quy nạp thì Sk 6, mặt khác k2 + k + 4 = k(k + 1) + 1 là số chẵn nên 3(k2 + k + 4) 6, do đó Sk+1 6

Vậy n3 + 11n chia hết cho 6 với mọi n ε N* .



Vietnhi Vo
Xem chi tiết
Minh Triều
17 tháng 6 2015 lúc 9:52

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

Hoàng Nguyễn Xuân Dương
17 tháng 6 2015 lúc 9:56

trieu dang làm đúng rùi

Trần Bảo Hân
Xem chi tiết
Trần Bảo Hân
17 tháng 9 2023 lúc 16:16

câu b là n^2 + n + 6 không chia hết cho 4

Hoàng Trọng Tùng
17 tháng 9 2023 lúc 16:18

Chắc vậy

Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 20:29

\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)

Lining
Xem chi tiết
Tami Hiroko
Xem chi tiết
lê duy mạnh
8 tháng 10 2019 lúc 21:26

a,(2n+4).2=4(n+2) chia hwtc ho 8

Nguyễn Văn Tuấn Anh
8 tháng 10 2019 lúc 21:28

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

Ahwi
8 tháng 10 2019 lúc 21:28

a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)

\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)

\(=n^2+6n+9-n^2+2n-1\)

\(=8n+8\)

\(=8\left(n+1\right)\)

có \(8\left(n+1\right)⋮8\)

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)

\(=n^2+12n+36-n^2+12n-36\)

\(=24n\)

có \(24n⋮24\)

\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)