Cho hình vuông ABCD có cạnh a. Các điểm M, N theo thứ tự chuyển động trên các cạnh BC, CD sao cho góc MAN = 45°.
a) Chứng minh rằng khoảng cách từ A đến MN và chu vi tam giác CMN không đổi.
b) Dụng các điểm M, N đề MN có độ dài nhỏ nhất.
c) Chứng minh rằng khi MN có độ dài nhỏ nhất thì tam giác CMN có diện tích lớn nhất.
Cho hình vuông ABCD cạnh a có điểm M bất kì trên cạnh CD. Lấy điểm N trên cạnh BC sao cho MA là tia phân giác của góc DMN. Kẻ AH vuông góc MN tại H
a, CMR AB=AH
b, CMR tam giác ANH=ANB
c, Tính số đo góc MAN
d, CMR chu vi tam giác CMN không đổi khi điểm M di chuyển trên cạnh CD
Cho hình vuông ABC cạnh a. Trên cạnh AB lấy điểm M, trên cạnh CD lấy điểm N sao cho chu vi tam giác CMN bằng 2a. Chứng minh rằng góc MAN có số đo không đổi.
Cho hình vuông ABCD. Gọi M,N là hai điểm lần lượt trên hai cạnh BC và CD sao cho góc MAN= 45 độ. Chứng minh chu vi tam giác CMN = 1/2 chu vi hình vuông ABCD
Trên tia đối của tia DC lấy E sao cho DE=BM
Xét ΔABM vuông tại B và ΔADE vuông tại D có
AB=AD
BM=DE
=>ΔABM=ΔADE
=>AM=AE
góc BAM+góc MAN+góc NAD=góc BAD=90 độ
=>góc BAM+góc NAD=45 độ
=>góc EAN=45 độ
Xét ΔEAN và ΔMAN có
AE=AM
góc EAN=góc MAN
AN chung
=>ΔEAN=ΔMAN
=>EN=MN
C CMN=CM+MN+CN
=CM+MN+CN
=CM+ED+DN+CN
=CM+BM+DN+CN
=BC+CD=1/2*C ABCD
cho hình vuông abcd có độ dài cạnh là a trên cạnh bc và cd lấy e,f sao cho chu vi tham giác cef=2a.tính góc eaf và chứng minh khoảng cách từ a đến ef không thay đổi khi e,f di chuyển bc và cd(vẫn có chu vi tam giác cef-2a)
cho hình vuông abcd có độ dài cạnh là a trên cạnh bc và cd lấy e,f sao cho chu vi tham giác cef=2a.tính góc eaf và chứng minh khoảng cách từ a đến ef không thay đổi khi e,f di chuyển bc và cd(vẫn có chu vi tam giác cef-2a)
Gọi AD là khoảng cách từ A đến EF.
Trên tia đối của tia DC lấy điểm F' sao cho DF' = BE
Ta có : CE + CF + EF = 2a => (a - DF) + (a - BE) + EF = 2a => EF = BE + DF = F'D + DF = FF'
Dễ thấy tam giác ADF' = tam giác ABE (c.g.c) => góc DAF' = BAE , AE = AF'
và tam giác FAF' = tam giác FAE (c.c.c) => góc FAF' = góc FAE
Ta có : Góc BAE + góc EAD = 90 độ => góc DAF' + góc góc DAE = 90 độ
hay góc EAF' = 90 độ => góc FAE = 1/2 góc EAF' = 1/2.90 độ = 45 độ.
b) Ở câu a đã chứng minh được tam giác AFF' = tam giác AFE nên kocs AFD = góc AFE
Xét tam giác ADF và tam giác AMF có AF là cạnh chung , góc AFD = góc AFE
=> tam giác ADF = tam giác AMF => AD = AM = a không đổi
cho hình vuông ABCD có cạnh là a. Trên BC lấy M bất kì khác B,C. Trên CD lấy N sao cho góc MAN=45 độ. Đường chéo BD cắt AM và AN tại E và F. Chứng minh:
a, tam giác ABE đồng dạng với tam giác ACN
b, góc AEN bằng góc AFM và bằn 90 độ
c, Diện tích tam giác AEF bằng diện tích tứ giác MNFE
d, chu vi tam giác CMN không đổi khi M di chuyển trên BC
e, Gọi H là giao của MF , ME . Chú Minh MH.MF + NH.NF = CC^2 + CM^2
Cho hình vuông ABCD cạnh a có điểm M bất kì trên cạnh CD. Lấy điểm N trên cạnh BC sao cho MA là tia phân giác của góc DMN. Kẻ AH vuông góc MN tại H
a, CMR AB=AH
b, CMR tam giác ANH=ANB
c, Tính số đo góc MAN
d, CMR chu vi tam giác CMN không đổi khi điểm M di chuyển trên cạnh CD
a: Xét ΔADM vuông tại D và ΔAHM vuông tại H có
AM chung
\(\widehat{DMA}=\widehat{HMA}\)
Do đó: ΔADM=ΔAHM
=>AD=AH
mà AD=AB
nên AH=AB
b: Xét ΔAHN vuông tại H và ΔABN vuông tại B có
AN chung
AH=AB
Do đó: ΔAHN=ΔABN
c: \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}\)
\(=\dfrac{1}{2}\left(\widehat{DAH}+\widehat{BAH}\right)\)
\(=\dfrac{1}{2}\cdot90^0=45^0\)
cho hình vuông ABCD có cạnh bằng a. các điểm M,N nằm trên các cạnh BC, CD ( M khác B,M khác C,N khác C,N khác D) sao cho góc MAN=45 độ. gọi E,F lần lượt là giao điểm của AM, AN trên BD
a) chứng minh chu vi tam giác MNC=2a
b) chứng minh rằng MF vuông góc với AN
C) tính diện tích tam giác AMN khi M,N lần lượt là giao điểm của tia phân giác của góc BAC với cạnh BC; tia phân giác của góc DAC với cạnh CD và a=4cm