Giải phương trình: \(\frac{5}{x^2-4x+5}-x^2+4x-1=0\)
Giải phương trình: \(\frac{21}{x^2-4x+5}-x^2+4x-6=0\)
Đặt \(x^2-4x+5=a\) (\(a\ge1\))
\(\frac{21}{a}-a-1=0\)
\(\Leftrightarrow-a^2-a+21=0\)
Nghiệm xấu, bạn coi lại dề
Giải phương trình: \(x^2-4x+\frac{10}{x^2-4x+5}=2\)
Thêm 5 vào hai vế suy ra:
\(\left(x^2-4x+5\right)+\frac{10}{x^2-4x+5}=7\)
Đặt \(t=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\). PT trở thành:
\(t+\frac{10}{t}=7\Leftrightarrow\frac{t^2+10}{t}=7\Leftrightarrow t^2-7t+10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=2\end{matrix}\right.\left(C\right)\). Với t = 5 suy ra \(x^2-4x+5=5\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Với t = 2 suy ra \(x^2-4x+5=2\Leftrightarrow x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\).
Vậy tập hợp nghiệm của PT là S = (0;1;3;4)
Giải phương trình: \(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=\frac{4x^2+17}{x^2+6}\)
\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)
\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)
\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)
\(\Rightarrow x=\pm1\)
Giải phương trình: \(x^2-12+\frac{36}{x^2}-4x+\frac{24}{x}=5\)
ĐKXĐ:...
\(x^2+\frac{36}{x^2}-4\left(x-\frac{6}{x}\right)-17=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow a^2=x^2+\frac{36}{x^2}-12\Rightarrow x^2+\frac{36}{x^2}=a^2+12\)
\(a^2+12-4a-17=0\)
\(\Leftrightarrow a^2-4a-5=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=-1\\x-\frac{6}{x}=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2-5x-6=0\end{matrix}\right.\)
Giải phương trình \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4x=3\sqrt{2}-1\)
Phương pháp giải như sau :
Trước hết phải có ĐKXĐ là \(x>1\)
Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\) (1)
Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có
\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên
(1) \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)
Kết luận:... (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)
Giải bất phương trình \(\dfrac{x+7}{5}\)+\(\dfrac{4x+5}{3}\)≥0
\(\Leftrightarrow\dfrac{3\left(x+7\right)}{15}+\dfrac{5\left(4x+5\right)}{15}\ge0\)
\(\Leftrightarrow3\left(x+7\right)+5\left(4x+5\right)\ge0\)
\(\Leftrightarrow23x+46\ge0\)
\(\Leftrightarrow23x\ge-46\)
\(\Leftrightarrow x\ge-2\)
Lời giải:
$\frac{x+7}{5}+\frac{4x+5}{3}\geq 0$
$\Leftrightarrow \frac{x}{5}+\frac{4x}{3}+\frac{7}{5}+\frac{5}{3}\geq 0$
$\Leftrightarrow \frac{23}{15}x+\frac{46}{15}\geq 0$
$\Leftrightarrow 23x+46\geq 0$
$\Leftrightarrow 23x\geq -46$
$\Leftrightarrow x\geq -2$
4x^2 - 5x - 4√(x-1) - 2 = 0 giải phương trình
\(4x^2-5x-4\sqrt{x-1}-2=0\left(x\ge1\right)\)
\(\Leftrightarrow\left(4x^2-4x+1\right)-\left(x-1+4\sqrt{x-1}+4\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(\sqrt{x-1}+2\right)^2=0\)
\(\Leftrightarrow\left(2x-1-\sqrt{x-1}-2\right)\left(2x-1+\sqrt{x-1}+2\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x-1}-3\right)\left(2x+\sqrt{x-1}+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=2x-3\\\sqrt{x-1}=-\left(2x+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x\in\varnothing\end{matrix}\right.\)
Vậy với x = 2 thì thỏa mãn pt
Giải phương trình sau:
( x - 2 ) × ( 4x + 5 ) = 0
Giúp mình nhé!!!!
\(\left(x-2\right)\left(4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{5}{4}\end{matrix}\right.\\ \Rightarrow S=\left\{-\frac{5}{4};2\right\}\)
x-2=0 hoặc 4x+5=0
x=2 hoặc x=\(\frac{-5}{4}\)
( x - 2 ) ( 4x + 5 ) = 0
➜\(\left[{}\begin{matrix}x-2=0\\4x+5=0\end{matrix}\right.\)
➜\(\left[{}\begin{matrix}x=2\\4x=-5\end{matrix}\right.\)
➜\(\left[{}\begin{matrix}x=2\\x=\frac{-5}{4}\end{matrix}\right.\)
Vậy S∈\(\left\{2;\frac{-5}{4}\right\}\)