Giải hệ:\(\left\{{}\begin{matrix}x^2+y^2+xy=2\\x^3+y^3=2x+4y\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(x+y-3\right)^3=4y^3\left(x^2y^2+xy+\frac{45}{4}\right)\\x+4y-3=2xy^2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}2x+5y=xy+2\\x^2+4y+21=y^2+10x\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}3x-2y+z=14\\2x+y-z=3\\z-2x=-5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-y^2=4y+2x+3\\x^2+2x+y=0\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\left|xy-4\right|=8-y^2\\xy=2+x^2\end{matrix}\right.\)
b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0
=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0
=>x=1 và y=-2 và x^2+2x+y=0
=>Hệ vô nghiệm
a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)
=>y=-2; 3x+4+2x-5=14; z=2x-5
=>y=-2; x=3; z=2*3-5=1
Giải hệ
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-2y^2=1\\2y^2-3z^2=1\\xy+yz+zx=1\end{matrix}\right.\left(x,y,z\in R\right)}\)
a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)
ĐKXĐ:...
\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)
Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:
\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)
\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)
\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)
Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)
\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)
\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)
\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)
Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)
\(\Rightarrow t-3=0\)
\(\Leftrightarrow t=3\)
\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)
Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)
\(\Leftrightarrow2y^2-1=0\)
\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)
\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)
Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)
b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)
Trừ theo vế 2 phương trình ta được:
\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)
Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)
\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.
Do đó \(x=y\)
Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Vậy...
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3+4y-y^3-16x=0\\y^2=5x^2+4\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\2x^2+y^2-2xy=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^3-y^3=9\\x^2+2y^2=x-4y\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)
Thế vào \(y^2=5x^2+4...\)
b. Đề bài không hợp lý ở \(4x^2\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
Trừ vế:
\(x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\)
\(\Leftrightarrow y=x-3\)
Thế vào \(x^2=2y^2=x-4y\) ...
b.
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{matrix}\right.\)
\(\Rightarrow y^4-2y^2-4xy^3+4xy=-1\)
\(\Leftrightarrow\left(y^2-1\right)^2-4xy\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(y^2-1\right)\left(y^2-1-4xy\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\\x=\dfrac{y^2-1}{4y}\end{matrix}\right.\)
Thế vào \(2x^2+y^2-2xy=1\) ...
Với \(x=\dfrac{y^2-1}{4y}\) ta được:
\(2\left(\dfrac{y^2-1}{4y}\right)^2+y^2-2\left(\dfrac{y^2-1}{4y}\right)y=1\)
\(\Leftrightarrow5y^4-6y^2+1=0\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x^2+2xy^2=3\\y^3+y+x\left(2xy-1\right)=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+x^3y-xy^2+xy-y=1\\x^4+y^2-xy\left(2x-1\right)=1\end{matrix}\right.\)
Câu a pt đầu là \(x^2+2xy^2=3\) hay \(x^3+2xy^2=3\) vậy nhỉ? Nhìn \(x^2\) chẳng hợp lý chút nào
b. \(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^4+y^2-2x^2y\right)+xy+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y\right)\left(xy+1\right)+xy+1=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)
Trừ vế cho vế:
\(\left(x^2-y\right)\left(xy+1\right)-\left(x^2-y\right)^2=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left[y\left(x+1\right)+\left(x+1\right)\left(1-x\right)\right]=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(x+1\right)\left(y+1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x^2\\x=-1\\y=x-1\end{matrix}\right.\)
- Với \(y=x^2\) thế xuống pt dưới:
\(x^4+x^4-x^3\left(2x-1\right)=1\Leftrightarrow x^3=1\Leftrightarrow...\)
....
Hai trường hợp còn lại bạn tự thế tương tự
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3+2y^2+xy^2=2+x-2x^2\\4y^2=\left(\sqrt{y^2+1}+1\right)\left(y^2-x^3+3x-2\right)\end{matrix}\right.\)
phân tích pt1 thành (x+2)(x2+y2-1)=0
\(\Rightarrow\)x= -2 hoặc y2=1-x2
Nếu x=-2 thay vào pt2
Nếu y2=1-x2.Thay vào pt2 để đưa về biến x
Nhân liên hợp 2 vế vs \(\sqrt{2-x^2}-1\)
giải hệ \(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2-2x^2-2=7y\end{matrix}\right.\)
Bạn tham khảo, phần c:
Giải hệ phương trình: \(a,\left\{{}\begin{matrix}\left(x-y\right)\left(x^2 y^2\right)=13\\\left(x y\right)\left(x^2-y^2... - Hoc24
giải các hệ phương trình sau
a)\(\left\{{}\begin{matrix}2x+y-5=0\\y+x^2=4x\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}2x+3y=2\\xy+x+y+6=0\end{matrix}\right.\)
Câu a: Thế y=5-2x rồi giải pt bậc2
Câu b : từ pt thứ 2, tương đương (x-3)(y-3)=0, xét 2 TH rồi thế vào pt thứ 1
Câu c: từ pt 1 suy ra 2x = 2-3y
Nhân 2 vào pt 2 rồi thế vào
B4:Giải hệ pt:
a)\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;0\right\}\)
b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;1\right\}\)
d.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b\) ta có hệ pt:
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{12}\\8a+15b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a+8b=\dfrac{2}{3}\\8a+15b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}7b=\dfrac{1}{3}\\8a+15b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a+15\times\dfrac{1}{21}=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a+\dfrac{5}{7}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\8a=\dfrac{2}{7}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a=\dfrac{1}{28}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{21}\\\dfrac{1}{x}=\dfrac{1}{28}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=21\\x=28\end{matrix}\right.\)
vậy hệ pt có ndn\(\left\{28;21\right\}\)