(x+2018)^2020 - (x+2018)^2019 = 0
(x+2018)^2020 - (x+2018)^2019 = 0
\(\left(x+2018\right)^{2020}-\left(x+2018\right)^{2019}=0\)
\(\Leftrightarrow\) \(\left(x+2018\right)^{2019}\left(x+2018-1\right)=0\)
\(\Leftrightarrow\) \(\left(x+2018\right)^{2019}\left(x+2017\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2018\right)^{2019}=0\\x+2017=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\x=-2017\end{matrix}\right.\)
\(\left(x+2018\right)^{2020}-\left(x+2018\right)^{2019}=0\\ \Leftrightarrow\left(x+2018\right)^{2019}\left[\left(x+2018\right)^2-1\right]=0\\ \Leftrightarrow\left(x+2018\right)^{2019}\left(x+2017\right)\left(x+2019\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+2018=0\\x+2017=0\\x+2019=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2018\\x=-2017\\x=-2019\end{matrix}\right.\)
Tìm x biết |x - 2018/2019| + |x - 2019/2020| = 0
Ta có: \(\left|x-\frac{2018}{2019}\right|\ge0\)
Và: \(\left|x-\frac{2019}{2020}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2018}{2019}\right|+\left|x-\frac{2019}{2020}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2018}{2019}\right|+\left|x-\frac{2019}{2020}\right|=0\)
\(\Leftrightarrow\left|x-\frac{2018}{2019}\right|=\left|x-\frac{2019}{2020}\right|=0\left(Vônghiệm\right)\)
\(\left|x-\frac{2018}{2019}\right|+\left|x-\frac{2019}{2020}\right|=0\)
Ta có:
\(\left\{{}\begin{matrix}\left|x-\frac{2018}{2019}\right|\ge0\\\left|x-\frac{2019}{2020}\right|\ge0\end{matrix}\right.\forall x.\)
\(\Rightarrow\left|x-\frac{2018}{2019}\right|+\left|x-\frac{2019}{2020}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-\frac{2018}{2019}\right|=0\\\left|x-\frac{2019}{2020}\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\frac{2018}{2019}=0\\x-\frac{2019}{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{2018}{2019}\\x=\frac{2019}{2020}\end{matrix}\right.\)
\(\Rightarrow\) Vô lí vì x không thể đồng thời nhận 2 giá trị khác nhau.
Vậy không tồn tại giá trị nào của x thỏa mãn yêu cầu đề bài.
Chúc bạn học tốt!
x+1/2018+x+1/2019+x+1/2020=0
Ta có x+1/2018 + x+1/2019 + x+1/2020 = 0
=> (x+1).(1/2018 + 1/2019+ 1/2020) = 0
Vì 1/2018 + 1/2019 + 1/2020 > 0
=> x+1 = 0
=> x = -1
B=x^2020 -2019 x^2019 - x^2018 - 2019 x^2017 - ...-2019x-2020 với x=2020
a, (x+3)(x+5)=0
b, (x-1)5-1=0
c,(x-2018) ^x+2019=1
(x-5)^3-(x-5)^2=0
E = 3^2020 - 3^2019 + 3^2018-......+3^2 - 3
a) (x+3)(x+5)=0
=>x+3=0 hoặc x+5=0
=>x=-3 hoặc -5
b) (x-1).5-1=0
=>5x-5-1=0
=>5x-6=0
=>5x=6
=>x=6/5
c)
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
X+1/2020+x+2/2019+x+3/2018+x+4/2017+4=0
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}+\dfrac{x+3}{2018}+\dfrac{x+4}{2017}+4=0\)
⇔ \(\dfrac{x+1}{2020}+1+\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1+\dfrac{x+4}{2017}+1=0\)
\(\Leftrightarrow\) \(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}=0\)
⇔ \(\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)
\(Do\) \(\left(\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)\ne0\)
⇒ \(x+2021=0\)
⇔ \(x=-2021\)
\(Vậy\) \(x=-2021\)
giúp em với, em sẽ tick ạ
Tính nhanh 2020/2019 - 2019/2018 + 1/2019 x 2018
\(\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{1}{2019}x2018\)
\(=\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{2018}{2019}=2-\dfrac{2019}{2018}=\dfrac{2017}{2018}\)
Giá trị nhỏ nhất của biểu thức: |x| + 2020 là:
A. 2019 B. 2018 C. 0 D. 2020
Ta có |x| \(\ge\) 0 \(\forall\) x
\(\Rightarrow\left|x\right|+2020\ge2020\)
D