Tìm ĐKXĐ của mỗi căn bậc 2 sau:
a) \(\sqrt{x^2-25}\)
b) \(\sqrt{\frac{x+1}{x-2}}\)
Câu 1 tìm đkxđ của các căn thức bậc hai sau
a)\(\sqrt{1-x}\)
b)\(\sqrt{\dfrac{2}{x}}\)
c)\(\sqrt{\dfrac{4}{x+1}}\)
d)\(\sqrt{x^2+2}\)
Câu 2 rút gọn
a)\(\sqrt{\left(-\sqrt{2-1}\right)^2}\)
b)\(\sqrt{\left(4+\sqrt{2}\right)^2}\)
1:
a: ĐKXĐ: 1-x>=0
=>x<=1
b: ĐKXĐ: 2/x>=0
=>x>0
c: ĐKXĐ: 4/x+1>=0
=>x+1>0
=>x>-1
d: ĐKXĐ: x^2+2>=0
=>x thuộc R
Câu 2:
a: \(=\left|-\sqrt{2-1}\right|=\sqrt{1}=1\)
b: \(=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)
AI giúp mình với Tìm ĐKXĐ của mỗi biểu thứ sau
a) \(\sqrt{\frac{-3}{x^2-4}}\) b) \(\frac{2}{\sqrt{x+1}-1}\) c) \(\frac{3}{\sqrt{x}+1}-\frac{\sqrt{x}}{x-1}\)
cho biểu thức \(p=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}\)
a;Tìm ĐKXĐ và rút gọn P
b;Tim giá trị của p khi x = 25
bài2
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
a;tìm ĐKXĐ và rút gọn biể thức a
b; tìm a khi x=9
bài 3
cho biểu thức \(p=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right)\div\frac{1}{\sqrt{x}+1}\)
a nếu ĐKXĐ và rút gọn biểu thức p
b tinh các giá trị của x để p =\(\frac{5}{4}\)
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
Bài 3 : \(x\ge0;x\ne1\)
\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)
\(=\left(\frac{2+\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
b, Ta có : \(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\Rightarrow4\sqrt{x}+8=5\sqrt{x}-5\)
\(\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\)(tmđk )
Tìm ĐKXĐ của căn thức bậc hai sau :
\(\sqrt{x^2-x+1}\)
Tìm ĐKXĐ của các biểu thức sau:
\(a,\frac{2}{\sqrt{x^2-x+1}}\)
\(b,\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)
\(a,\)\(\frac{2}{\sqrt{x^2-x+1}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x^2-x+1\ge0\\x^2-x+1\ne0\end{cases}\Rightarrow x^2-x+1>0}\)
Mà \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
Cho biểu thức :
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
a) Tìm ĐKXĐ rồi rút gọn biểu thức B
b) Tính giá trị của B với x=3
c) Tìm giá trị của x để GTTĐ của A = 1/2
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)\(\left(ĐKXĐ:x\ne4\right)\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Với \(x=3\)( thỏa mãn ĐKXĐ ) ta có \(P=\frac{3\sqrt{3}}{\sqrt{3}+2}=-9+6\sqrt{3}\)
c) A ở đâu ???? '-'
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho M = \(\left(\frac{2}{1-\sqrt{x}}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
a) tìm đkxđ của M
b) rút gọn M
c) tìm gt nhoe nhất của M
cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)
a)tìm ĐKXĐ của x
b) rút gọn A
a) ĐKXĐ : \(0\le x\ne4\)
b) \(A=\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)
\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\left(x-4\right)\)
\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
\(=\frac{-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=-1\)
\(A=\left[\frac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{x-4}\right]:\frac{1}{x-4}\)
\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{x-4}.\left(x-4\right)\)=\(=\frac{-1}{x-4}.\left(x-4\right)=-1\)
Vậy giá trị của A thỏa mãn mọi x và rút gọn lại còn -1