\(c,\frac{-1}{\sqrt{x}-5}< 0;\)
Giải bất phương trình
Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) A = \(\frac{1}{x}.\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)\) với x>1
b) B = \(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) với x>= 0
c) C = \(\frac{\sqrt{a^3}+a}{a^2+\sqrt{a^5}}.\left(\frac{b^2}{a-\sqrt{a^2-b^2}}+\frac{b^2}{a+\sqrt{a^2-b^2}}\right)\) với a>0 và |a| > |b|
d) D = \(\frac{a+b\sqrt{a}}{b-a}.\sqrt{\frac{ab+a^2-2\sqrt{a^3b}}{b^2+2b\sqrt{a}+a}}:\frac{a}{\sqrt{a}+\sqrt{b}}\) với b>a>0
rút gọn biểu thức
a) A= \(2\sqrt{\frac{1}{2}}+\sqrt{18}\)
b) B= \(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5+3}\right)\)
c) C= \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
d) D = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x-2}}{x-1}\right)\left(x+\sqrt{x}\right)\left(x>0,x\ne1\right)\)
e) E = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
a, A = \(\frac{5+7\sqrt{5}}{\sqrt{5}}+\frac{11+\sqrt{11}}{1+\sqrt{11}}\)
b, B = \(\left(1-\sqrt{5}\right).\frac{\sqrt{5}+5}{2\sqrt{5}}\)
c, C = \(1+\left(\frac{x+\sqrt{x}}{1+\sqrt{x}}\right).\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)\) ( với 0 < bằng x)
Giải giúp ạ- mai mình cần rồi
rút gọn biểu thức
a) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
cho biểu thức
A= \(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right).\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) với x>0; x khác 0
a) rút gọn biểu thức A
b) tính giá trị của x khi A > \(\frac{1}{6}\)
1: Rút gọn biểu thức
a) Ta có: \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=5\cdot\frac{1}{\sqrt{5}}+\frac{1}{3}\cdot3\sqrt{5}+\left|2-\sqrt{5}\right|\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-2\)(Vì \(2< \sqrt{5}\))
\(=3\sqrt{5}-2\)
b) Ta có: \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{\left(5+\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)^2}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}\)
\(=\frac{30+10\sqrt{5}+30-10\sqrt{5}}{25-5}\)
\(=\frac{60}{20}=3\)
2:
Sửa đề: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Ta có: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4;\frac{14\pm6\sqrt{5}}{4}\right\}\end{matrix}\right.\)
Để \(A>\frac{1}{6}\) thì \(A-\frac{1}{6}>0\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)
\(\Leftrightarrow\frac{2\sqrt{x}-4}{6\sqrt{x}}-\frac{\sqrt{x}}{6\sqrt{x}}>0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{6\sqrt{x}}>0\)
mà \(6\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-4>0\)
\(\Leftrightarrow\sqrt{x}>4\)
hay x>16
Kết hợp ĐKXĐ, ta được: x>16
Vậy: Để \(A>\frac{1}{6}\)thì x>16
Rút gọn :
a, \(-\sqrt{36b}\) - \(\frac{1}{3}\sqrt{54b}\) + \(\frac{1}{5}\sqrt{150b}\) ( b ≥ 0 )
b, \(5\sqrt{\frac{x}{y}}\) - \(4\sqrt{\frac{y}{x}}\) + \(\frac{1}{xy}\) (x > 0 , y > 0 )
c, \(\frac{1}{\sqrt{x-1}}\) + \(\frac{1}{1+\sqrt{x}}\) + 1 ( x ≥ 0 , x ≠ 1 )
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
Rút gọn các biểu thức sau:
a) A=\(\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
b) B=\(\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{1}{\sqrt{x+1}}\right)\)
c) C= \(\frac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\)với \(x=\frac{1}{2}\left(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\right)\)và 0<a<1
Mọi người giải chi tiết giúp mk với ạ
c,Có x=\(\frac{1}{2}\left(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}\right)\left(0< a< 1\right)\)
<=> \(x=\frac{1}{2}\left(\frac{\sqrt{1-a}}{\sqrt{a}}-\frac{\sqrt{a}}{\sqrt{1-a}}\right)\) (vì 0<a<1)
<=>\(x=\frac{1}{2}.\frac{\sqrt{1-a}^2-\sqrt{a}^2}{\sqrt{a}.\sqrt{1-a}}=\frac{1}{2}.\frac{1-a-a}{\sqrt{a\left(1-a\right)}}=\frac{1}{2}.\frac{1-2a}{\sqrt{a\left(1-a\right)}}=\frac{1-2a}{2\sqrt{a\left(1-a\right)}}\)(1)
<=> 1+x2=1+\(\frac{1}{4}.\frac{\left(1-2a\right)^2}{a\left(1-a\right)}\)= \(\frac{4a\left(1-a\right)+\left(1-2a\right)^2}{4a\left(1-a\right)}\)
<=> 1+x2=\(\frac{4a-4a^2+1-4a+4a^2}{4a\left(1-a\right)}=\frac{1}{4a\left(1-a\right)}\)>0
<=> \(\sqrt{1+x^2}=\frac{1}{2\sqrt{a\left(1-a\right)}}\) (2)
Thay (1),(2) vào C có:
C= \(\frac{2a.\frac{1}{2\sqrt{a\left(1-a\right)}}}{\frac{1}{2\sqrt{a\left(1-a\right)}}-\frac{1-2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{1-1+2a}{2\sqrt{a\left(1-a\right)}}}=\frac{\frac{a}{\sqrt{a\left(1-a\right)}}}{\frac{2a}{2\sqrt{a\left(1-a\right)}}}=1\)
Vậy C=1
Nếu thấy to thì bạn nhấn tổ hợp phím (Ctrl -) để thấy rõ nhé
Rút gọn các biểu thức:
a)\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)với x>0 và \(x\ne1\)
b)\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}\)với x>0 và \(x\ne4\)
c)\(5\sqrt{\frac{x}{y}}-4\sqrt{\frac{y}{x}}+\sqrt{\frac{1}{xy}}\)với x>0, y>0
a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )
b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )
a) Với \(x>0\)và \(x\ne1\)ta có:
\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với \(x>0\)và \(x\ne4\)ta có:
\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)
cho hai biểu thức A=\(\frac{\sqrt{x}-1}{\sqrt{x}-5}\)và B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}+\frac{5}{\sqrt{x}-1}+\frac{4}{x-1}\)với x≥0,x≠1 và x≠25
a)rút gọn B
b)so sánh C=\(\left(A.B+\frac{x-5}{\sqrt{x}-5}\right).\frac{\sqrt{x}-5}{\sqrt{x}}\)với 3
\(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(B=\frac{x-\sqrt{x}+3\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
b/ \(C=\left(\frac{\sqrt{x}-1}{\sqrt{x}-5}.\frac{\sqrt{x}+6}{\sqrt{x}-1}\right).\frac{\sqrt{x}-5}{\sqrt{x}}\)
\(C=\frac{\sqrt{x}+6}{\sqrt{x}-5}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}+6}{\sqrt{x}}=1+\frac{6}{\sqrt{x}}\)
Cai này thì so sánh \(\frac{6}{\sqrt{x}}\) vs 2
Nếu0< x<9\(\Rightarrow\frac{6}{\sqrt{x}}< 2\)
Nếu x=9\(\Rightarrow\frac{6}{\sqrt{x}}=2\)
Nếu x>9\(\Rightarrow\frac{6}{\sqrt{x}}>2\)
Điều kiện: $ - \frac{1}{3} \le x \le 6$
Ta nhẩm thấy x = 5 là nghiệm của PT, thêm bớt và trục căn thức ta có:
Phương trình $ \Leftrightarrow \left( {\sqrt {3x + 1} - 4} \right) - \left( {\sqrt {6 - x} - 1} \right) + \left( {3{x^2} - 14x - 5} \right) = 0$
$ \Leftrightarrow \frac{{3\left( {x - 5} \right)}}{{\sqrt {3x + 1} + 4}} + \frac{{x - 5}}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)\left( {x - 5} \right) = 0$
$ \Leftrightarrow \left( {x - 5} \right)\left[ {\frac{3}{{\sqrt {3x + 1} + 4}} + \frac{1}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)} \right] = 0 \Leftrightarrow \left( {x - 5} \right)g\left( x \right) = 0$
Với điều kiện trên ta thấy g(x) > 0 vậy x = 5 là nghiệm của PT.