3y(x^2-xy)-7x^2(y+xy)
3y(x^2-xy)-7x^2(y+xy)
bài này là tính hay giải hệ hay tìm x;y phải có điều kiên chứ
xy+14+2y+7x=-10
xy+5x+y=4
xy+x+y=2
xy-10+5x-3y=2
xy-1=3x+5y+4
3x+4y-xy=15
xy+x+y=2
xy+x+y+1=2+1
(xy+x)+(y+1)=3
x(y+1)+(y+1)=3
(x+1)(y+1)=3=1.3=3.1=-1.-3=-3.-1
\(\Rightarrow\left[{}\begin{matrix}x+1=1;y+1=3\\x+1=3;y+1=1\\x+1=-1;y+1=-3\\x+1=-3;y+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0;y=2\\x=2;y=0\\x=-2;y=-4\\x=-4;y=-2\end{matrix}\right.\)
Vậy:.................
xy+14+2y+7x= -10
\(\Leftrightarrow\)y(x+2)+7(x+2)=-10
\(\Leftrightarrow\)(y+7)(x+2)=-10=1.(-10)=2.(-5)=5.(-2)=10.(-1)
y+7 | 1 | 2 | 5 | 10 |
x+2 | -10 | -5 | -2 | -1 |
y | -6 | -5 | -2 | 3 |
x | -12 | -7 | -4 | -3 |
a)x^2(x-3)-4x+12 b)2a(x+y)-x+y c)6x^2-12x-7x+14 d)xy-y^2-3x+3y f)x^2y+xy^2-4x-4y g)10ax-5ay-7x+14 j)a^3-a^2+9a-9(tính nhân tử chung)
a: \(x^2\left(x-3\right)-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
b: \(2a\left(x+y\right)+x+y=\left(x+y\right)\left(2a+1\right)\)
c: \(6x^2-12x-7x+14\)
\(=6x\left(x-2\right)-7\left(x-2\right)\)
\(=\left(x-2\right)\left(6x-7\right)\)
X^3-2x^2+xy^2
X^2(y-1)-7x^3+7x^3y
Thu gọn đa thức sau và tìm bậc của đa thúc:
3y.(x^2- xy) - 7x^2.(y+xy)
\(3y\left(x^2+xy\right)-7x^2\left(y+xy\right)\)
\(=3yx^2+3xy^2-7yx^2-7x^3y\)
\(=3xy^2-4xy^2-7x^3y\)
\(=3xy\left(y-4x^2-7x^2\right)\)
B1 :tìm x, y
a, xy+x+y=2
b, xy-10+5x-3y=2
c, xy-1=3x+5y+4
d, 3x+4y-xy=15
e, xy+5x+y+4
Các bn nhớ giải rõ giúp mik, phần lập bảng giá trị mik sẽ tự làm, ví dụ như mẫu sau:
VD: xy+14+2y+7x=-10
=(xy + 2y) + ( 14+7x) = -10
= y(2+x) + 7(2+x) = -10
(2+x) . ( y+7) =10 { phần bảng giá trị mik sẽ tự làm tiếp)
Giải HPT
\(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
\(PT\left(2\right)\Leftrightarrow x=y-1\\ PT\left(1\right)\Leftrightarrow2\left(y-1\right)^2+y\left(1-y\right)+3y^2=7\left(y-1\right)+12y-1\\ \Leftrightarrow2y^2-11y+5=0\\ \Leftrightarrow\left[{}\begin{matrix}y=5\Leftrightarrow x=4\\y=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
1.tìm điều kiện xác định của các bt sau
a,5x^2y/x+4 b,3x-2y/2x-1 c,5x^2/x(y-3) d,4x^3y/x^2-4y^2 e,2x+1/(5-x)(y+2)
2.rút gọn các phân thức
a,-12x^3y^2/-20x^2y^2 b,x^2+xy-x-y/x^2-xy-x+y c,7x^2-7xy/y^2-x^2 d,7x^2+14x+7/3x^2+3x e,3y-2-3xy+2x/1-3x-x^3+3x^2
f,x^10-x^8+x^6-x^4+x^2+1/x^4-1 g,x^2+7x+12/x^2+5x+6
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
Tìm tất cả cặp số nguyên (x;y) sao cho 2y^3 - xy^2 - 3y^2 + 14y - 7x - 5 = 0