Tính giá trị biểu thức(dùng hằng đẳng thức thứ 3)
25y^4-30y^2+9
Tại y=-4
tính giá trị của biểu thức :
x^2-10xy+25y^4 tại x = 105 , y = 5
\(x^2-10xy+25y^4\\ =x^2-2.5.x.y+\left(5y^2\right)^2\\ =\left(x-5y^2\right)^2\)
Thay \(x=105,y=5\) vào biểu thức ta được:
\(\left(105-5.5^2\right)^2\\ =\left(105-5.25\right)^2\\ =\left(-23\right)^2\\ =529\)
x^2-10xy+25y^4 = (x-5y)^2
thay x=105, y=5 ta được (105-5.5)^2=80^2=6400
Cho x-y=1. Tính giá trị biểu thức
P=(x+y)(x^2+y^2)(x^4+y^4)-x^8+y^8+1
Gợi ý: theo hằng đẳng thức 3
\(P=\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\) (Vì: \(x-y=1\))
\(\Leftrightarrow P=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=\left(x^4-y^4\right)\left(x^4+y^4\right)-x^8+y^8+1\)
\(\Leftrightarrow P=x^8-y^8-x^8+y^8+1\)
\(\Leftrightarrow P=1\)
bài bạn làm hơi sai
Bài 5: Chứng minh đẳng thức sau:
a,(a+b)² + (a-b)²=2(a²+b²)
b,(a+b+c)=a²+b²+c²+2ab+2ac+2bc
Bài 6: Sử dụng hằng đẳng thức để tính nhanh giá trị biểu thức:
A=x²-y² tại x=87 và y=13
B=25x²-30x+9 tại x=2
C=4x²-28x+49 tại x=4
Bài 5 là quá kiểu hiển nhiên roài phá ra là xong mà :))))))
Bài 6:
\(A=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\)
\(B=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)
\(C=\left(2x-7\right)^2=\left(2.2-7\right)^2=\left(4-7\right)^2=\left(-3\right)^2=9\)
Bài 1:
a) \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)
\(=a^2+b^2+a^2+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)(Đpcm)
b) \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ac+2bc+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca\)(Đpcm)
Bài 2:
a) \(x^2-y^2=\left(x-y\right)\left(x+y\right)=\left(87-13\right)\left(87+13\right)=74.100=7400\)
b)\(25x^2-30x+9=\left(5x\right)^2-2.5.3x+3^2=\left(5x-3\right)^2=\left(5.2-3\right)^2=7^2=49\)
c)\(4x^2-28x+49=\left(2x\right)^2-2.2.7x+7^2=\left(2x-7\right)^2=\left(2.4-7\right)^2=1^2\)
Bài 5.
( a + b )2 + ( a - b )2 = a2 + 2ab + b2 + a2 - 2ab + b2 = 2a2 + 2b2 = 2( a2 + b2 ) ( đpcm )
( a + b + c )2 = [ ( a + b ) + c ]2
= ( a + b )2 + 2( a + b )c + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ca ( đpcm )
Bài 6.
A = x2 - y2 = ( x - y )( x + y )
Với x = 87 ; y = 13
A = ( 87 - 13 )( 87 + 13 ) = 74 . 100 = 7400
B = 25x2 - 30x + 9
= ( 5x )2 - 2.5x.3 + 32
= ( 5x - 3 )2
Với x = 2
B = ( 5.2 - 3 )2 = 72 = 49
C = 4x2 - 28x + 49
= ( 2x )2 - 2.2x.7 + 72
= ( 2x - 7 )2
Với x = 4
C = ( 2.4 - 7 )2 = 12 = 1
xét hằng đẳng thức (x+1)^4=x^4+4x^3+6x^2+4x+1. Lần lượt cho x bằng 1,2,...,n rồi cộng từng vế n đẳng thức trên để tính giá trị của biểu thức: S=1^3+2^3+...+n^3.
S=n(n+1)mũ 2 trên 4
cho x-y=1. Tính giá trị biểu thức :
P=(x+y).(x^2+y^2).(x^4+y^4)-x^8+y^8+1
Gợi ý : Áp dụng hằng đẳng thức 3
(A+B).(A-B)=A^2-B^2
Cho x + y = 3. Tính giá trị của biểu thức:
A = x2 + 2xy + y2 - 4x - 4y + 1
P/S: Bài này dùng hằng đẳng thức để tính mà mình chỉ làm được phân nửa...
\(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1\)
\(=-2\)
Tính giá trị của biểu thức :
x^2-10xy+25y^4 tại x=105,y=5x2−10xy+25y4x squared minus 10 x y plus 25 y to the fourth powerBài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Bài 1: Tính
a.(2x+3y)^2-(5x-y)^2
b(x+2/5)^2.(x-2/5)-(2x-y)^2
c.(x+1/4)^2-(2x-3)^3
Bài 2: Tính giá trị biểu thức bằng cách vận dụng hằng đẳng thức
A=x^3+3x^2+3x+6 với x=19
B=x^3-3x^2+3x với x=11
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)