Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 22:01

a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có

AO chung

AM=AN

Do đó: ΔAMO=ΔANO

=>góc MAO=góc NAO

=>AO là phân giác của góc MAN

b: OB=OA

OA=OC

Do đó: OB=OC

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

nothing
4 tháng 1 2023 lúc 20:41

loading...

yeulannhieulam
Xem chi tiết
yeulannhieulam
19 tháng 2 2020 lúc 18:43

Ai giải đc giúp mình với

Khách vãng lai đã xóa
PTN (Toán Học)
19 tháng 2 2020 lúc 18:58

Ta có :\(\Delta ABC\)cân tại \(A\)

\(=>\hept{\begin{cases}AB=AC\\ABC=ACB\end{cases}}\)

Lại có :\(BE=AB;CD=AC\)

Mà \(AB=AC=>BE=CD\)

\(=>BD+DE=EC+DE\)

\(=>BD=EC\)

Xét \(\Delta ABD\)và \(\Delta ACE\)

\(AB=AC\left(gt\right)\\ BD=EC\left(cmt\right)\\ ABC=ACB\left(gt\right)\)

\(=>\Delta ABD=\Delta ACE\left(c-g-c\right)\)

\(=>AD=AE\left(canh.tuong.ung\right)\)

\(=>\Delta ADE\)cân tại \(A\)

Khách vãng lai đã xóa
Tomoe
19 tháng 2 2020 lúc 18:59

a, tam giác ABC cân tại A (gt)

=> AB = AC (đn)

AB = BE

AC = CD 

=> AB = AC = BE = CD

xét tam giác ABE và tam giác ACD có : góc ABC = góc ACB do tam giác ABC cân tại A (Gt)

=> tam giác ABE = tam giác ACD (c-g-c)

=> AD = AE (đn)

=> tam giác ADE cân tại A (gt)

Khách vãng lai đã xóa
Nguyễn Thị Kiểm
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Dương Phùng Đăng
Xem chi tiết
Hợp Nguyễn
Xem chi tiết
anhtu
Xem chi tiết
HuyenAnh Pham
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 21:01

a: Xét ΔPBC và ΔQCB có 

PB=QC

\(\widehat{PBC}=\widehat{QCB}\)

BC chung

Do đo: ΔPBC=ΔQCB

Suy ra: \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

b: OB=OC

AB=AC

Do đó: AO là đường trung trực của BC

Ta có: ΔABC cân tại A

mà AO là đường trung trực

nên AO là đường phân giác

hay O cách đều hai cạnh AB và AC

Phuong Nguyen Bao
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 15:04

a: Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

mà \(\widehat{DBC}=\widehat{ECB}\)

nên BDEC là hình thang cân