a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN
Do đó: ΔAMO=ΔANO
=>góc MAO=góc NAO
=>AO là phân giác của góc MAN
b: OB=OA
OA=OC
Do đó: OB=OC
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN
Do đó: ΔAMO=ΔANO
=>góc MAO=góc NAO
=>AO là phân giác của góc MAN
b: OB=OA
OA=OC
Do đó: OB=OC
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
. Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh tam giác ABM = tam giác ACN .
b) Chứng minh MN // BC.
c) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
Cho tam giác ABC cân tại A.Tia phân giác góc B cắt AC tại M, tia phân giác góc C cắt AB tại N
a)Chứng minh tam giác AMN cân và MN//BC
b) Gọi I là trung điểm của BC , E là giao điểm của CN và BM.Chứng minh A,I,E thẳng hàng
Cho tam giác ABC cân tại A, Â = 120° Từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D. a) Chứng minh ∆DAB = ∆DAC b) Chứng minh ∆ DBC là tam giác đều. c) Gọi H là giao điểm của AD và BC . Chứng minh 2BH + AD > AB + BD.
Cho tam giác abc cân tại a . M là trung điểm của bc . Mi vuông góc vs ab . Mk vuông góc vs ac. - chứng minh tam giác BIM = tam giác BKM - chứng minh AM là đường trung trực của BC - Tính BC biết Ab = 10 cm , AM =8cm
. Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác của góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác DAE cân
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh tam giác BDF cân tại B.
c) Chứng minh BD = CE.
Cho tam giác ABC có ba góc nhọn, AB < AC. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia phân giác của góc BAC cắt các đường thẳng AB và AC lần lượt tại H và K.
a) Chứng minh rằng: Tam giác HAK cân
b) Chứng minh rằng: BH = CK.
c) Tính độ dài các đoạn thẳng AH và BH, biết AB = 9cm, AC = 12cm.