Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kieu Thuy Nga
Xem chi tiết
nguyễn phùng phước
Xem chi tiết
Kutevippro
Xem chi tiết
Lê Minh Phú
25 tháng 8 2016 lúc 11:49

Gọi d là ƯCLN của 11a +2b và 18a +5b

=> 11a +2b chia hết cho d và 18a +5b chia hết cho d

=> 18.﴾11a + 2b﴿ chia hết cho d và 11﴾18a + 5b﴿ chia hết cho d

=> 11﴾18a + 5b﴿ - 18.﴾11a + 2b﴿ chia hết cho d

=> 19 b chia hết cho d

=> 19 chia hết cho d hoặc b chia hết cho d ﴾1﴿

=> d là ước của 19 hoặc d là ước của b

Tương tự ta cũng có 5.﴾11a + 2b﴿ chia hết cho d và 2﴾18a + 5b﴿ chia hết cho d

=> 5.﴾11a + 2b﴿ - 2﴾18a + 5b﴿ chia hết cho d

=> 19a chia hết cho d => 19 chia hết cho d hoặc a chia hết cho d => d là ước của 19 hoặc d là ước của a﴾2﴿

Từ ﴾1﴿ và ﴾2﴿ suy ra d là ước của 19 hoặc d là ước chung của a và b => d = 19 hoặc d = 1

Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1 

Ad
11 tháng 2 2019 lúc 16:24

Gọi d là Ước chung lớn nhất của 11a + 2b và 18a + 5

=> 11a + 2b chia hết cho d

=> 18a + 5b chia hết cho d

=> 11( 18a + 5b ) - 18( 11a + 2b ) chia hết cho d

=> ( 198a + 55b ) - ( 198a + 36b ) chia hết cho d

=> 19b chia hết cho d ( 1 )

=> 5( 11a + 2b ) - 2( 18a + 5b ) chia hết cho d

=> ( 55a + 10b ) - ( 36a + 10b ) chia hết cho d

=> 19a chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) suy ra 19 chia hết cho d

=> d thuộc Ư(19)

=> d thuộc { 1 ; 19 }

Mà d là Ước chung lớn nhất của 11a + 2b và 18a + 5b

=> d = 19.

Tran Thi Xuan
Xem chi tiết
Nguyễn Thị Thùy Dương
29 tháng 11 2015 lúc 10:52

1)

  gọi d = (a; a+b)

=> a chia hết cho d và a+b chia hết cho d

Ta có (a+b) -a = b chia hết cho d

=> a ; b chia hết cho d  =>(a;b) =d ; mà (a;b) =1 => d =1

Vậy (a;a+b) =1

2) 

d =(a;a-b)  => a chia hết cho d và  a-b chia hết cho d

=> a - ( a -b ) = b chia hết cho d

=> (a;b) =d ; mà (a;b) = 1 => d =1

Vậy (a; a - b) =1

Mai Anh Tuấn
Xem chi tiết
ahahduc
Xem chi tiết
Lê Bá Khánh Linh
Xem chi tiết
Tulips
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:53

Lời giải:
Gọi $d=ƯCLN(a,b)$

$\Rightarrow a\vdots d; b\vdots d$

$\Rightarrow a+b\vdots d\Rightarrow p\vdots d$
Mà $p$ là snt nên $d=1$ hoặc $d=p$

Nếu $d=p$ thì $a\vdots p\Rightarrow a\vdots a+b$ (vô lý với mọi $a,b$ là số nguyên dương.

$\Rightarrow d=1$

$\Rightarrow a,b$ là 2 số nguyên tố cùng nhau.

Ngoc Bich
Xem chi tiết