Phân tích thành nhân tử :
a, x2-7
b, x2-3
c, x2-2 căn 13 . x +13
(phần này dấu căn đến số 13 thôi nhá)
Phân tích thành nhân tử :
a, x2-2 căn 2 . x +2
( phần này dấu căn đến số 2 nhé)
b, x2 +2 căn 5.x +5
( phần này dấu căn chỉ đến số 5 thôi nhé
a) \(x^2-2\sqrt{2}x+2\)
\(=\left(x-\sqrt{2}\right)^2\)
b) \(x^2+2\sqrt{5}x+5\)
\(=\left(x+5\right)^2\)
Bài1
A) căn x2-4x+3 =căn 3-2x
B) căn x+7 =5-x
C) căn x2-2x+13 + 2 =2x
Ai giúp em bài này với
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
Tìm x để biểu thức sau có nghĩa:
a, căn x2-2x+1
b, căn x+3 + căn x+9
c, căn x-1/x+2
d, căn x-2 + 1/x-5
(phần này dấu căn chỉ đến x-2 thôi nhé)
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
\(d,\)\(\sqrt{x-2}-\frac{1}{x-5}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}xđ\\\frac{1}{x-5}xđ\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2\ge0\\x-5\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ne5\end{cases}}}\)
Vậy biểu thức xác định \(\Leftrightarrow x\ge2\)và \(x\ne5\)
Phân tích đa thức thành nhân tử:
1) 8 – x2 + 2x
2) 2x2 – 3x + 1
3) x2 + 4
1: \(-x^2+2x+8\)
\(=-\left(x^2-2x-8\right)\)
\(=-\left(x-4\right)\left(x+2\right)\)
2: \(2x^2-3x+1=\left(x-1\right)\left(2x-1\right)\)
Phân tích thành nhân tử: x 2 + 2 13 x + 13
Ta có:
x 2 + 2 13 x + 13 = x 2 + 2 . x . 13 + 13 2 = x + 13 2
x2-2 căn 13 . x +13
(phần này dấu căn đến số 13 thôi nhá)
Câu 13 (1,25 điểm)
1) Phân tích đa thức x2 - 2x + 1 thành nhân tử
2) Tìm x biết
3) Thực hiện phép chia (x+2)2 + 2x + 1) : ( x +1)
Câu 14(1,75đ) Cho phân thức
1) Với điều kiện nào của x thì giá trị của phân thức xác định?
2) Rút gọn phân thức.
3) có giá trị nào của x để phân thức có giá trị bằng 0 hay không?
Câu 16: ( 0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức A = x2 - 4x + 24
1: \(=\left(x-1\right)^2\)
2: \(x\in\left\{0;20\right\}\)
Câu 13:
\(1,=\left(x-1\right)^2\\ 2,\Leftrightarrow x\left(x-20\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=20\end{matrix}\right.\\ 3,\text{Đề lỗi}\)
Câu 14:
\(1,ĐK:x\ne-2\\ 2,=\dfrac{\left(x+2\right)^2}{x+2}=x+2\\ 3,\Leftrightarrow x+2=0\Leftrightarrow x=-2\left(ktm\right)\Leftrightarrow x\in\varnothing\)
Câu 16:
\(A=x^2-4x+4+20=\left(x-2\right)^2+20\ge20\)
Dấu \("="\Leftrightarrow x=2\)
phân tích đa thức thành nhân tử
a) (x+y)2-8(x+y)+12
b) (x2+2x)2-2x2-4x-3
c) (x2+x)2-2(x2+x)-15
a/ \(\left(x+y\right)^2-8\left(x+y\right)+12\)
\(=\left(x+y\right)\left(x+y-8+12\right)\)
\(=\left(x+y\right)\left(x+y+4\right)\)
==========
b/\(\left(x^2+2x\right)^2-2x^2-4x-3\)
\(=\left(x^2+2x\right)^2-\left(2x^2+4x\right)-3\)
\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3\)
\(=\left(x^2+2x\right)\left(x^2+2x-5\right)\)
===========
c/ \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2-15\right)\)
\(=\left(x^2+x\right)\left(x^2+x-17\right)\)
[---]
phân tích thành nhân tử
a,x2 - 5 b, x2 - 11
c,x - 2 (x ≥ 0 ) d, x2 - 2√5 x +5
a) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
b) \(x^2-11=\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)\)
c: \(x-2=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
d: \(x^2-2\sqrt{5x}+5=\left(x-\sqrt{5}\right)^2\)