Cho \(\Delta ABC\) vuông tại A, đường cao AH, AB = 20cm, HC = 9cm. Tính độ dài AH và BC.
Cho \(\Delta ABC\) vuông tại A, đường cao AH, AB = 20cm, HC = 9cm. Tính độ dài AH và BC.
Áp dụng hệ thực giữa cạnh và đường cao trong tam giác vuông có:
\(AH^2=AB.BH\)
\(\Leftrightarrow20^2=BH\left(BH+9\right)\)
\(\Leftrightarrow BH^2+94H-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
Lại có: \(BC=BH+HC=16+9=25\left(cm\right)\)
\(\Rightarrow AH^2=BH.CH=16.9=12^2\)
\(\Rightarrow AH=12\left(cm\right)\)
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
AB^2=BH.BC
<=>20^2=BH.(BH + 9)
<=>BH^2 + 9BH-400=0
=> BH=16cm
Mà BC=BH + HC=16 + 9=25cm
AH^2 = BH.HC = 16.9 = 12^2
suy ra AH = 12cm.
Vậy AH=12cm.
Đặt BH = x. Khi đó: BC = 9+x
Ta có:
AB^2 = x(x+9)
400 = x^2 + 9x
(x^2 + 9x + 4,5^2) - 420,25 = 0
(x + 4,5)^2 - 20,5^2 = 0
(x - 16)(x+25) = 0
=> x = 16 (x = -25 loại)
BH = x = 16
AH^2 = 9x = 9.16 = 144 => AH = 12
cho tam giác ABC vuông tại A, đường cao AH, AB=20cm, HC=9cm. tính độ dài AH
Cho tam giác ABC vuông tại A, đường cao Ah, AB=20cm, HC=9cm. Tính độ dài AH
Áp dụng hệ thực giữa cạnh và đường cao trong tam giác vuông có:
\(AH^2=AB.BH\)
\(\Leftrightarrow20^2=BH\left(BH+9\right)\)
\(\Leftrightarrow BH^2+94H-400=0\)
\(\Rightarrow BH=16\left(cm\right)\)
Lại có: \(BC=BH+HC=16+9=25\left(cm\right)\)
\(\Rightarrow AH^2=BH.CH=16.9=12^2\)
\(\Rightarrow AH=12\left(cm\right)\)
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
AB^2=BH.BC
<=>20^2=BH.(BH + 9)
<=>BH^2 + 9BH-400=0
=> BH=16cm
Mà BC=BH + HC=16 + 9=25cm
AH^2 = BH.HC = 16.9 = 12^2
suy ra AH = 12cm.
Vậy AH=12cm.
Cho tam giác ABC vuông tại A, đường cao AH biết AB= 20cm, HC= 9cm. Tính độ dài AH
Gọi AC=a;BH=b
thì ta có hệ pt \(\sqrt{a^2+20^2}=9+b\)(pytago)
\(\frac{20a}{b+9}=\sqrt{9b}\)(hệ thức lượng trong tam giác vuông)
\(\sqrt{AC^2+20^2}=BC=9+BH\)
\(\frac{20AC}{BH+HC}=AH=\sqrt{BH\cdot HC}\)
Cho tam giác ABC vuông tại A có đường cao AH. Biết AB= 20cm, HC= 9cm. Tính độ dài BH, AH
AB^2=BH*BC
=>BH(BH+9)=20^2=400
=>BH^2+9BH-400=0
=>(BH+25)(BH-16)=0
=>BH=16cm
AH=căn BH*CH=12(cm)
Cho tam giác ABC vuông tại A, kẻ đường cao AH (H thuộc cạnh BC). Biết HB = 9cm, HC = 16cm. Tính độ dài: AH, AB.
Cho tam giác ABC vuông tại A có AB = 12cm, BC= 20cm. Kẻ đường cao AH. a) Chứng minh ∆ABC và ∆ HBA đồng dạng. b) Chúng minh AH^2= HB. HC c) Tính độ dài AH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC
c: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
AH=12*16/20=192/20=9,6cm
Cho tam giác ABC vuông tại A và đường cao AH. Biết A = 90 độ, AB = 15cm, AC = 20cm.
a) TÍnh cạnh BC.
b) Tính độ dài của AH, BH và HC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=20cm, HC=9cm. Tính AH
v~
ta có \(AB^2=BH.BC=BH.\left(BH+9\right)=BH^2+9BH\)
\(BH^2+9BH-AB^2=0\)
\(\Leftrightarrow BH^2+9BH-20^2=0\Leftrightarrow BH^2+9BH-400=0\)
\(\Leftrightarrow BH^2-16BH+25BH-400=0\)
\(\Leftrightarrow BH\left(BH-16\right)+25\left(BH-16\right)=0\)
\(\Leftrightarrow\left(BH-16\right)\left(BH+25\right)=0\)
=> BH = 16 VÀ BH = -25 ( loại )
=> BH = 16
\(AH=\sqrt{AB^2-BH^2}=\sqrt{20^2-16^2}=12\)
CHỖ NÀO KO HỈU HỎI LẠI MIK NHAN !!!