Cho a,b,c \(\inℕ^∗\). So sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
So sánh:
a) \(A=\frac{n}{n+1};B=\frac{n+2}{n+3}\left(n\inℕ\right)\)
b) \(A=\frac{n}{n+3};B=\frac{n-1}{n+4}\left(n\inℕ^∗\right)\)
c) \(A=\frac{n}{2n+1};B=\frac{3n+1}{6n+3}\left(n\inℕ\right)\)
Giúp mình nhé gấp lắm ai trả lời đầu tiên mình sẽ tick
a)A=n/n+1=n/n+0/1
B=n+2/n+3=n/n + 2/3
ta có:0<2/3
=>A<B
a) Cho \(a,b,n\inℕ^∗\) . Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b) Cho \(A=\frac{10^{11}-1}{10^{12}-1}\); \(B=\frac{10^{10}-1}{10^{11}-1}\). Hãy so sánh
c) Rút gọn biểu thức \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
khôn thế a zai
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
Biết n!=1.2.3...n \(\left(n\inℕ^∗;n\ge2\right)\)và \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+......+\frac{2014}{2015!}\)
Hãy so sánh A với 1
Ta có \(A=\frac{1}{2!}+\frac{2}{3!}+...+\frac{2014}{2015!}\)
=> \(A=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2015-1}{2015!}\)
=> \(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2015!}< 1\)
Cho a, b thuộc N* . Hãy so sánh \(\frac{a+n}{b+n}và\frac{a}{b}\)
Từ \(\frac{a}{b}\)> 1, Suy ra: an < bn
Suy ra: an + ab < bn + ab
Suy ra: a (n + b) < b (n + a)
Suy ra: \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nhầm, Suy ra: an > bn
Suy ra: an + ab > bn + ab
Suy ra: a (n + b) > b (n + a)
nếu a=b=>\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)
nếu a>b=>\(\frac{a+n}{b+n}\)>\(\frac{a}{b}\)
nếu a<b=>\(\frac{a+n}{b+n}\)<\(\frac{a}{b}\)
1)a)Cho a,b,n thuộc N*.Hãy so sánh \(\frac{a+n}{b+n}\)và\(\frac{a}{b}\)b)Cho A=\(\frac{10^{11}-1}{10^{12}-1}\);B=\(\frac{10^{10}+1}{10^{11+1}}\).So sánh A và B.
a. Cho a, b, c thuộc N*. Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b. Cho A = \(\frac{10^{11}-1}{10^{12}-1}\); B =\(\frac{10^{10}+1}{10^{11}+1}\). So sánh A và B
Các bạn giúp dùm mình nha mình đang cần gấp bạn nào làm đúng và nhanh nhất thì mình tick cho ( nhớ có lời giải nữa nha) ^^
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
Cho a, b, c \(\in\)N*. So sánh \(\frac{a+n}{b+n}\)và\(\frac{a}{b}\)
+) Nếu \(\frac{a}{b}< 1\)
=> a < b
=> an < bn
=> ab + an < ab + bn
=> a(b + n) < b(a + n)
=> \(\frac{a}{b}< \frac{a+n}{a+n}\)
+) Nếu \(\frac{a}{b}>1\)
=> a > b
=> an > bn
=> ab + an > ab + bn
=> a(b + n) > b(a + n)
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
+) Nếu \(\frac{a}{b}=1\)
=> a = b
=> a + n = b + n
=> \(\frac{a+n}{b+n}=\frac{a}{b}\)
\(n\ge3;n\inℕ\)
CMR:
\(\frac{1}{a^n\left(b+c\right)}+\frac{1}{b^n\left(c+a\right)}+\frac{1}{c^n\left(a+b\right)}\ge\frac{3}{2}\)