Mình lộn chữ "c" sửa thành chữ "n" nha
ta có:a<b
1-a+n/b+n =(b+n-a-n)/a+n=>(b-a)/a+n
Vì (b-a)/a < (b-a)/a+n nên a/b ( b>0) > a+n/b+n
Làm tương tự Vs a>b nha!
#)Giải :
Ta xét ba trường hợp :
- Trường hợp 1 : Nếu a > b
Ta có : \(\frac{a}{b}-1=\frac{a-b}{b}\)
\(\frac{a+n}{b+n}-1=\frac{a+n-b+n}{b+n}=\frac{a-b}{b+n}\)
Vì \(\frac{a-b}{b}>\frac{a-b}{b+n}\Rightarrow\frac{a}{b}-1>\frac{a+n}{b+n}-1\)hay \(\frac{a}{b}>\frac{a+n}{b+n}\)khi a > b
- Trường hợp 2 : Nếu a < b
Ta có : \(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+n}{b+n}=\frac{b+n-a+n}{b+n}=\frac{b-a}{b+n}\)
Vì \(\frac{b-a}{b}>\frac{b-a}{b+n}\Rightarrow1-\frac{a}{b}>1-\frac{a+n}{b+n}\)hay \(\frac{a}{b}< \frac{a+n}{b+n}\)khi a < b
- Trường hợp 3 : Nếu a = b
\(\Rightarrow\frac{a+n}{b+n}=\frac{a}{b}=1\)
Vậy \(\frac{a}{b}=\frac{a+n}{b+n}\)khi a = b
\(TH1:a< b\)
\(\Rightarrow an< bn\)
\(\Rightarrow an+ab< bn+ab\)
\(\Rightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
\(TH2:a=b\)
\(\Rightarrow an=bn\Rightarrow an+ab=bn+bn\)
\(\Rightarrow a\left(b+n\right)=b\left(a+n\right)\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)
\(TH3:a>b\)
\(\Rightarrow an>bn\Rightarrow an+ab>bn+ab\)
\(\Rightarrow a\left(b+n\right)>b\left(a+n\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)