2/ Tìm x biết:
0,2+\(\left|x-1,3\right|\)=1,5
Tìm \(x\in\mathbb{Q}\), biết :
a) \(\left|2,5-x\right|=1,3\)
b) \(1,6-\left|x-0,2\right|=0\)
c) \(\left|x-1,5\right|+\left|2,5-x\right|=0\)
a) Vì \(\left|2,5-x\right|=1,3\Rightarrow\left\{{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\left\{{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)
b) \(1,6-\left|x-0,2\right|=0\)
\(\Rightarrow\left|x-0,2\right|=1,6\)
Vì \(\left|x-0,2\right|=1,6\Rightarrow\left\{{}\begin{matrix}x-0,2=1,6\\x-0,2=-1,6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,8\\x=-1,4\end{matrix}\right.\)
c) Vì \(\left|x-1,5\right|\ge0;\left|2,5-x\right|\ge0\)
Mà \(\left|x-1,5\right|+\left|2,5-x\right|=0\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Vô lý vì \(x\) không thể nhận đồng thời 2 giá trị \(\Rightarrow x\) không có giá trị thỏa mãn đề bài
a. Vì |2,5 – x| = 1,3 nên 2,5 – x =1,3
=> x = 2,5 – 1,3 => x = 1,2
Hoặc 2,5 – x = -1,3 => x = 2,5 – ( -1,3)
=> x = 2,5 + 1,3 => x = 3,8
Vậy x = 1,2 hoặc x = 3,8
b. 1,6 - | x – 0,2| = 0 => |x – 0,2 | =1,6 nên x – 0,2 – 1,6
=> x = 1,6 + 0,2 => x = 1,8
Hoặc x – 0,2 = -1,6 => x= -1,6 + 0,2 => x = -1,4
Vậy x = 1,8 hoặc x = -1,4
c. |x – 1,5 | + | 2,5 – x | = 0 nên |x – 1,5| ≥ 0 ; |2,5 – x| ≥ 0
Suy ra: x – 1,5 = 0; 2,5 – x = 0 => x= 1,5 và x = 2,5
Điều này không đồng thời xảy ra. Vậy không có giá trị nào của x thoả mãn bài toán.
Tìm x\(\in\)Q,biết:
a)\(\left|3,5-x\right|=1,3\)
b)\(1,6-\left|x-0,2\right|=0,4\)
c)\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
a) \(\left|3,5-x\right|=1,3\)
\(\Rightarrow\left[{}\begin{matrix}3,5-x=1,3\\3,5-x=-1,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3,5-1,3\\x=3,5+1,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2,2\\x=4,8\end{matrix}\right.\)
b) \(1,6-\left|x-0,2\right|=0,4\)
\(\Rightarrow\left|x-0,2\right|=1,2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,2=1,2\\x-0,2=-1,2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1,2+0,2\\x=-1,2+0,2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1,4\\x=-1\end{matrix}\right.\)
\(\left|3,5-x\right|=1,3\)
\(\Rightarrow\left[{}\begin{matrix}3,5-x=1,3\Rightarrow x=2,2\\3,5-x=-1,3\Rightarrow x=4,8\end{matrix}\right.\)
\(1,6-\left|x-0,2\right|=0,4\)
\(\Rightarrow\left|x-0,2\right|=1,2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,2=1,2\Rightarrow x=1,4\\x-0,2=-1,2\Rightarrow x=-1\end{matrix}\right.\)
\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-1,5\right|=0\Rightarrow x=1,5\\\left|2,5-x\right|=0\Rightarrow x=2,5\end{matrix}\right.\)
\(1,5\ne2,5\Rightarrow x\in\varnothing\)
c) \(\left|x-1,5\right|+\left|2,5-x\right|=0\)
Ta có : \(\left|x-1,5\right|\ge0\) với mọi \(x\)
\(\left|2,5-x\right|\ge0\) với mọi \(x\)
Nên \(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)
Vậy không tìm được giá trị thõa mãn của \(x\)
Chúc học tốt !!!
tìm x \(\in\) Q biết
\(a,\left|2,5-x\right|=1,3\)
\(b,1,6-\left|x-0,2\right|=0\)
\(c,\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(d,\left(x-\frac{1}{2}\right)^2=0\)
\(e,\left(x-2\right)^2=1\)
\(f\left(2x-1\right)^3=-8\)
Tìm \(x\in Q\), biết:
a, \(\left|2,5-x\right|=1,3\)
b, \(1,6-\left|x-0,2\right|=0\)
a)\(\left[{}\begin{matrix}\dfrac{5}{2}-x=\dfrac{1}{3}\\\dfrac{5}{2}-x=-\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{13}{6}\\x=\dfrac{17}{6}\end{matrix}\right.\)
b) 8/6-x-1/5=0
9/6-x=1/5
x=13/10
a) \(\left|2,5-x\right|=1,3\)
\(\Leftrightarrow\left[{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)
b) \(1,6-\left|x-0,2\right|=0\)
\(\Leftrightarrow\left|x-0,2\right|=1,6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-0,2=1,6\\x-0,2=-1,6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1,8\\x=-1,4\end{matrix}\right.\)
Tìm x \(\in\) Q biết:
a)\(\left|2,5-x\right|-1,3=0\)
b)\(1,6\cdot\left|x-0,2\right|=0\)
c)\(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)
d)\(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
e)\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
a) \(\left|2,5-x\right|-1,3=0\)
th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)
th2: \(2,5-x< 0\Leftrightarrow x>2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)
vậy \(x=1,2;x=3,8\)
b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)
c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)
th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)
th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)
vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)
d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)
th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)
vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)
e) ta có : \(\left|x-1,5\right|\ge0\forall x\) và \(\left|2,5-x\right|\ge0\forall x\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm
Bài 1:
a) \(\left(x-1,3\right)^2=9\)
b) \(2^{4-x}=32\)
c) \(\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\)
a) \(\left(x-1,3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x-1,3=3\\x-1,3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
b) 24-x = 32
⇔ 24-x = 25
⇔ 4-x=5
⇔ x=-1
c) (x+1,5)2+(y-2,5)10=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
\(a,\left(x-1,3\right)^2=9\\ \Leftrightarrow\left(x-1,3+9\right)\left(x-1,3-9\right)=0\\ \Leftrightarrow\left(x-7,7\right)\left(x-10,3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7,7=\dfrac{77}{10}\\x=10,3=\dfrac{103}{10}\end{matrix}\right.\)
\(b,2^{4-x}=32=2^5\\ \Leftrightarrow4-x=5\\ \Leftrightarrow x=-1\)
\(c,\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1,5=-\dfrac{3}{2}\\y=2,5=\dfrac{5}{2}\end{matrix}\right.\)
a. (x - 1,3)2 = 9
<=> (x - 1,3)2 - 9 = 0
<=> (x - 1,3)2 - 32 = 0
<=> (x - 1,3 - 3)(x - 1,3 + 3) = 0
<=> (x - 4,3)(x + 1,7) = 0
<=> \(\left[{}\begin{matrix}x-4,3=0\\x+1,7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
tìm x
\(\left|2,5-x\right|=1,3\)
\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\left(x-2\right)^2=1\)
|2,5-x|=1,3
\(\orbr{\begin{cases}2,5-x=1,3\\2,5-x=-1,3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1,2\\x=3,8\end{cases}}\)
Vậy x=1,2 hoặc x=3,8
|x-1,5|+|2,5-x|=0
\(\Rightarrow\hept{\begin{cases}VT:x-1,5=0\\VP:2,5-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}\)
Vậy x của VT là 1,5 và x của VP là 2,5
\(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
x=\(0+\frac{1}{2}\)
x=\(\frac{1}{2}\)
(x-2)2=1
=> x-2=1
x=1+2
x=3
=> x-2=-1
x=(-1)+2
x=1
a, / 2,5 - x / = 1,3
Với 2,5 - x > hoặc = 0 => 2, 5 - x = 1,3
=> x = 1, 2
Với 2,5 - x < hoặc = 0 => - ( 2,5 - x ) = 1,3
=> - 2,5 + x = 1,3
=> x = 3,8
Vậy x thuộc tập hợp 1,2 ; 3,8
p/s: > hoặc = 0, < hoặc = 0 , thuộc tập hợp bạn ghi kí hiệu nha
1)tìm x biết
a)1,6-\(\left|x-0,2\right|\)=0
b)\(\left|x-1,5\right|\)+\(\left|2,5-x\right|\)=0
2)tìm giá trị lớn nhất của:
A=0,5-\(\left|x-3,5\right|\)
B=-\(\left|1,4-x\right|\)-2
Bài 1:a/ 1.6-Ix-0.2I=0
Có 2 trường hợp:
TH1: x-0.2=1.6
=> x=1.6+0.2=1.8
TH2: x-0.2=-1.6
=> x=-1.4
b/ Có 2 trường hợp:
TH1:x-1.5=0=>x=1.5
TH2: 2.5-x=0=> x=2.5
Bài 2: a/ Vì Ix-3.5I\(\ge0\)
=> Amax=0.5-0=0.5 khi x=3.5
b/ Vì -I1.4-xI \(\le0\)
Nên Bmax=0-2=-2 khi x=1.4
Tìm x thuộc Q biết
a) |2,5-x|=1,3
b) 1,6 - |x-0,2|=0
c) |x-1,5| + |2,5-x|=0
Mình làm rồi nhớ chọn Đúng đấy :
a) |2,5 - x| = 1,3
=> hoặc 2,5 - x = 1,3 hoặc 2,5 - x = -1,3
=> hoặc x = 1,2 hoặc x = 3,8
a,
Ta co :
|2,5-x|=1,3
Ta thấy đây trên có 2 trườg hợp
suy ra :|2,5-x|=-+1,3
TH1:
2,5-x=-1,3
x = 2,5 - (-1,3)
x = 3,8
TH2:
2,5-x=1,3
x = 2,5-1,3
x = 1,2
Vậy :s=1,2 và 3,8
b,
Ta co :
16-|x-0,2|=0
|x-0,2| =16-0
|x-0,2| = 16
Ta thay day tren co 2 t/h
suy ra : |x-0,2|=-+16
TH1:
x-0,2=-16
x = -16 + 0,2
x = -15,8
TH2:
x-0,2=16
x = 16 + 0,2
x = 16,2
Vậy s=16,2 và -15,8
x + x : 0,2 = 1,35
x * 1 + x * 5 = 1,35
x * ( 1 + 5 ) = 1,35
x * 6 = 1,35
x = 1,35 : 6
x = 0,225
hok tốt nha ^_^