Tìm ƯCLN của các số sau :
a) 2n+1 và 6n+5.
b)3n+1 và 5n+4 biết chúng không nguyên tố cùng nhau.
biết rằng 3n+1 và 5n+4 là 2 số không nguyên tố cùng nhau .tìm ƯCLN của 2 số trênbiết rằng 3n+1 và 5n+4 là 2 số không nguyên tố cùng nhau .tìm ƯCLN của 2 số trên
Câu hỏi tương tự nhé bạn !
UCLN = 7
Tick mình nha
Đề học sinh giỏi cho các bồ nha
Bài 1: 1) Chứng minh rằng hai số tự nhiên liên tiếp nguyên tố cùng nhau.
2) Tìm hai số tự nhiên biết rằng tổng của chúng là 168, ƯCLN của chúng bằng 12.
3) Tìm hai số tự nhiên biết hiệu của chúng là 168, ƯCLN của chúng bằng 56, các số đó trong khoảng từ 600 đến 800.
4) Chứng minh rằng: 3n + 1 và 4n + 1 (n N) là 2 nguyên tố cùng nhau.
5) Biết rằng 4n + 3 và 5n + 2 là hai số không nguyên tố cùng nhau. Tìm ƯCLN (4n + 3, 5n + 2)
mk cx hok bồi nek
sao thấy đề bồi này nó cứ dễ sao ấy
Với số tự nhiên n,chứng tỏ các cặp số sau là số nguyên tố cùng nhau.
a)2n + 3 và 3n + 5 c,3n + 4 và 4n + 5
b)5n + 3 và 7n + 5 d,4n + 1 và 6n + 2
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
CMR các cặp số sau nguyên tố cùng nhau
a.(2n+1) và 6n+5
b.(3n+2) và 5n+3
Chứng tỏ rằng các cặp số sau nguyên tố cùng nhau với mọi số tự nhiên n: a, 2n + 1 và 6n + 5 b, 3n + 2 và 5n + 3
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
Biêt 3n + 1 và 5n + 4 ( n thuộc N ) là 2 số không nguyên tố cùng nhau. Tìm ƯCLN của chúng
Đặt ƯCLN(3n + 1 ; 5n + 4) = d với d khác 1.
Ta có 3.(5n + 4) - 5.(3n + 1) = 15n + 12 - 15n + 5 = 7 chia hết cho d.
Do d lớn nhất => d = 7
Biêt 3n + 1 và 5n + 4 ( n thuộc N ) là 2 số không nguyên tố cùng nhau. Tìm ƯCLN của chúng
Tớ vừa làm rồi :
Đặt ƯCLN(3n + 1 ; 5n + 4) = d với d khác 1.
Ta có 3.(5n + 4) - 5.(3n + 1) = 15n + 12 - 15n + 5 = 7 chia hết cho d.
Do d lớn nhất => d = 7
ƯCLN(3n+1;5n+4) = d và d khác 0
có: 3.(5n+4)-5.(3n+1)=15n+12-15n+5=7 chia hết cho d
vì d lớn nhất =>d=7
hihihih **** nhe
em chua chăc đúng
Đặt ƯCLN(3n + 1 ; 5n + 4) = d với d khác 1. Ta có 3.(5n + 4) - 5.(3n + 1) = 15n + 12 - 15n + 5 = 7 chia hết cho d. Do d lớn nhất => d = 7
Chứng minh rằng ; Các cặp số sau nguyên tố cùng nhau
a) 2n + 1 và 6n + 5
b) 3n + 2 và 5n + 3
gọi UCLN﴾2n + 1 ; 6n + 5﴿ là d
ta có :
2n + 1 chia hết cho d =>3(2n+1) chia hết cho d=>6n+3 chia hết cho d
6n + 5 chia hết cho d
=> [﴾6n + 5﴿ ‐ ﴾6n + 3﴿] chia hết cho d
=>2 chia hết cho d
=> d thuộc Ư﴾2﴿ = {1;2}
Mà 2n + 1 ; 6n + 5 lẻ nên n = 1
=>UCLN(..)=1
=>ntcn
Chứng minh rằng với mọi số tự nhiên n, các số sau đây nguyên tố cùng nhau:
a) 2n+1 và 2n+3
b) 2n+5 và 3n+7
c) 5n+1 và 6n+1
a) Đặt UCLN (2n+1;2n+3)=d
TC UCLN(2n+1;2n+3)=d
=>\(\hept{\begin{cases}2n+1:d\\2n+3:d\end{cases}}\)
=>(2n+3)-(2n+1):d
=>2:d
=>d e U(2)={1;2}
Mà 2n+1 lẻ=> d lẻ=>d=1
b)
Đặt UCLN (2n+5;3n+7)=d
TC UCLN(2n+5;3n+7)=d
=>\(\hept{\begin{cases}2n+5:d=>6n+15:d\\3n+7:d=>6n+14:d\end{cases}}\)
=>(6n+15)-(6n+14):d
=>1:d
=>d=1
phần c bạn tự làm nốt nhé
học tốt nhé